98%
921
2 minutes
20
Oral cancer, particularly oral squamous cell carcinoma (OSCC), is a significant global health challenge because of its high incidence and limited treatment options. Major risk factors, including tobacco use, alcohol consumption, and specific microbiota, contribute to the disease's prevalence. Recently, a compelling association between diabetes mellitus (DM) and oral cancer has been identified, with metformin, a widely used antidiabetic drug, emerging as a potential therapeutic agent across various cancers, including OSCC. This review explores both preclinical and clinical studies to understand the mechanisms by which metformin may exert its anticancer effects, such as inhibiting cancer cell proliferation, inducing apoptosis, and enhancing the efficacy of existing treatments. Preclinical studies demonstrate that metformin modulates crucial metabolic pathways, reduces inflammation, and impacts cellular proliferation, thereby potentially lowering cancer risk and improving patient outcomes. Additionally, metformin's ability to reverse epithelial-to-mesenchymal transition (EMT), regulate the LIN28/let-7 axis, and its therapeutic role in head and neck squamous cell carcinoma (HNSCC) are examined through experimental models. In clinical contexts, metformin shows promise in enhancing therapeutic outcomes and reducing recurrence rates, although challenges such as drug interactions, complex dosing regimens, and risks such as vitamin B12 deficiency remain. Future research should focus on optimizing metformin's application, investigating its synergistic effects with other therapies, and conducting rigorous clinical trials to validate its efficacy in OSCC treatment. This dual exploration underscores metformin's potential to play a transformative role in both diabetes management and cancer care, potentially revolutionizing oral cancer treatment strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11394296 | PMC |
http://dx.doi.org/10.3390/cancers16173017 | DOI Listing |
Int J Surg
September 2025
Department of Oral and Maxillofacial Surgery, The Affiliated Tai'an City Central Hospital of Qingdao University, Taian, China.
Cancer Causes Control
September 2025
College of Public Health, Iowa Cancer Registry, Epidemiology Department, University of Iowa, Iowa City, IA, USA.
Purpose: Human papillomavirus (HPV) causes oral and anogenital cancers, the incidence of which is increasing. Late-stage diagnosis is associated with increased mortality. Neighborhood-level characteristics and distance to place of diagnosis may impact timely diagnosis.
View Article and Find Full Text PDFCancer Causes Control
September 2025
Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA.
Purpose: The U.S. Preventive Services Task Force recommends that men aged 55-69 years undergo shared decision-making (SDM) regarding prostate cancer (PCa) screening, and routine screening is not recommended for older men or those with limited life expectancy.
View Article and Find Full Text PDFSupport Care Cancer
September 2025
Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Purpose: To compare the efficacy of intraoral (IOPBM) and extraoral photobiomodulation (EOPBM) protocols for the prevention and treatment of oral mucositis (OM) in patients with oral or oropharyngeal squamous cell carcinoma (SCC) to submitted radiotherapy (RT).
Methods: This randomized, blinded, multicenter clinical trial enrolled 58 patients with oral or oropharyngeal SCC, who were allocated into two groups matched by treatment type, clinical stage, and RT modality. Group I (IOPBM) received intraoral photobiomodulation (PBM) with a continuous InGaAlP diode laser (660 nm, 100 mW, 0.
mBio
September 2025
Department of Microbiology, Haukeland University Hospital, Bergen, Norway.
Unlabelled: There is a considerable interest in the association between and colorectal cancer (CRC). Recently, it was suggested that this association is valid only for a distinct clade of ( C2) and that strains belonging to another clade ( C1) are only associated with the oral cavity. It was further suggested that this made C1 a natural comparator when looking for candidate genes associated with the pathogenicity of C2.
View Article and Find Full Text PDF