A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Metabolomic and transcriptomic analyses reveal the mechanism of polysaccharide and secondary metabolite biosynthesis in Bletilla striata tubers in response to shading. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polysaccharides and various secondary metabolites are the major bioactive ingredients in Bletilla striata tubers and their biosynthesis and accumulation are influenced by light intensity. However, the mechanisms underlying shading effects remain largely unknown. In the present study, we used a combined analysis of the physiology, metabolome, and transcriptome to investigate the physiological activities and bioactive component accumulation of B. striata under different shading treatments (S0, S50, S70, and S90). The dry weight of shoots and tubers, net photosynthetic rate, and polysaccharide content were highest in S50 and lowest in S90. The content of precursors (sucrose, Glucose-6P, and Mannose-6P) for polysaccharide synthesis significantly increased in S50. However, the expression levels of genes involved in starch biosynthesis decreased in S50. Several structural genes involved in secondary metabolism, including cinnamic acid 4-hydroxylase (C4H), chalcone synthase (CHS), and 1-Deoxy-D-xylulose-5-phosphate synthase (DXS), showed decreased expression in S50. However, the shading effect on the biosynthesis of secondary metabolites (phenylpropanoids, flavonoids, and terpenoids) was inconsistent. Our study provides the molecular mechanisms underlying the effects of shading on the biosynthesis of polysaccharides and secondary metabolites in B. striata and offers a theoretical basis for the artificial cultivation and industrial production of bioactive ingredients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.135545DOI Listing

Publication Analysis

Top Keywords

secondary metabolites
12
bletilla striata
8
striata tubers
8
polysaccharides secondary
8
bioactive ingredients
8
mechanisms underlying
8
genes involved
8
shading biosynthesis
8
secondary
5
biosynthesis
5

Similar Publications