Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pollution by microplastics and nanoplastics (MNPs) raises concerns, not only regarding their environmental effects, but also their potential impact on human health by internalization via the small intestine. However, the detailed pathways of MNP internalization and their toxicities to the human intestine have not sufficiently been understood, thus, further investigations are required. This work aimed to understand the behavior of MNPs, using in vitro human intestine models, tri-culture models composed of enterocyte Caco-2 cells, goblet-like HT29-MTX-E12 cells, and microfold cells (M cells) induced by the lymphoblast cell line Raji B. Three sizes (50, 100, and 500 nm) of polystyrene (PS) particles were exposed as MNPs on the culture model, and size-dependent translocation of the MNPs and the contributions of each cell were clarified, emphasizing the significance of the tri-culture model. In addition, potential concerns of MNPs were suggested when they invaded the circulatory system of the human body.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397364PMC
http://dx.doi.org/10.3390/nano14171435DOI Listing

Publication Analysis

Top Keywords

microplastics nanoplastics
8
tri-culture models
8
human intestine
8
human
5
mnps
5
size-dependent internalization
4
internalization microplastics
4
nanoplastics vitro
4
vitro model
4
model human
4

Similar Publications

Microplastics, tiny fragments resulting from the degradation of plastic waste, are abundant in water, air, and soil and are currently recognized as a global environmental problem. There is also growing evidence that nanosized microplastics (nanoplastics) can be hazardous to living species. Unlike most experimental methods, computer modeling is particularly well suited to studying the effects of such nanoplastics.

View Article and Find Full Text PDF

Asthma is a chronic inflammatory respiratory disease influenced by genetic and environmental factors. Emerging evidence suggests that microplastics and nanoplastics (NPs) pose significant health risks. When inhaled, these tiny particles can accumulate in the lungs, triggering inflammation, oxidative stress, and other disruptions in pulmonary function.

View Article and Find Full Text PDF

Hepatotoxicity induced by polylactic acid microplastics: The mediating role of gut microbiota and uric acid metabolism.

J Adv Res

September 2025

National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China. Electronic address: huangzhenlie85825

Introduction: The increasing use of biodegradable plastics has led to the inevitable human consumption of biodegradable microplastics (MPs). These MPs can be degraded and absorbed into various organs and tissues via the gastrointestinal tract, with the liver being the primary target for digestion and absorption.

Objectives: This study aimed to investigate the toxic effects and mechanisms of biodegradable MPs on the liver following gastrointestinal degradation.

View Article and Find Full Text PDF

Microplastics and nanoplastics (MNPs) are common pollutants that engage with proteins, lipids, nucleic acids, and other biomolecules, damaging cell structure. This review goes beyond simply listing where MNPs are found to explore how they cause harm, detailing mechanisms such as oxidative stress, endocrine disruption, genotoxicity, protein misfolding, lipid membrane destabilization, and epigenetic changes. Propose an integrated mechanistic hypothesis connecting these processes via oxidative epigenetic feedback loops, size-dependent organelle targeting, and pollutant corona effects, with potential implications for cellular aging and transgenerational outcomes.

View Article and Find Full Text PDF