Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High pulse discharge breakage has a vast prospect as a fresh crushing mechanism for it has the capability to enhance the comminuting effect, however, the breaking mechanism is not yet well studied. In this orthogonal designed research, 27 indoor tests of high voltage pulse discharge (HVPD) for breaking concrete together with the determination of dynamic elastic modulus of concrete based on three variables, i.e. applied voltage, pulse number, and discharge electrode gap, were carried out at three levels. The effects of these factors were studied by using significance and range analysis. The results showed that among these factors, the pulse number has the greatest impact on the dynamic elastic modulus loss (DEML) of concrete, while the applied voltage has the least influence. By changing the value of pulse number and applied voltage, the DEML can be increased to 12.9% and 26.7%, respectively. The impact of the factors' combination was experimentally proven, and the resulting DEML of concrete broken by HVPD was obtained as 219.73 ± 9.58 MPa, which was 25.19% higher than the maximum of the DEML of concrete broken by HVPD in the orthogonal experiment under various individual factors. These findings provide technical references for improving the crushing efficiency of concrete materials and the engineering application of HVPD crushing technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393336PMC
http://dx.doi.org/10.1038/s41598-024-71905-2DOI Listing

Publication Analysis

Top Keywords

dynamic elastic
12
elastic modulus
12
concrete broken
12
voltage pulse
12
pulse discharge
12
applied voltage
12
pulse number
12
deml concrete
12
modulus loss
8
high voltage
8

Similar Publications

Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.

View Article and Find Full Text PDF

Hydrogen embrittlement (HE) poses a significant challenge to the durability of materials used in hydrogen production and utilization. Disentangling the competing nanoscale mechanisms driving HE often relies on simulations and electron-transparent sample techniques, limiting experimental insights into hydrogen-induced dislocation behavior in bulk materials. This study employs in situ Bragg coherent X-ray diffraction imaging to track three-dimensional (3D) dislocation and strain field evolution during hydrogen charging in a bulk grain of austenitic 316 stainless steel.

View Article and Find Full Text PDF

The growing consumer interest in functional and health-oriented foods prompted the incorporation of tartary buckwheat sprout flour (TBSF) into food production. The addition of TBSF enhanced the nutritional value of noodles. Research has shown that as the proportion of TBSF increased, both the water absorption rate and thermal stability of the dough improved, while formation time decreased and dough aging was inhibited.

View Article and Find Full Text PDF

Quasielastic and Inelastic Neutron Scattering Study of Ultraconfined Water in Natural Mordenite ((Ca,Na,K)AlSiO·7HO).

Langmuir

September 2025

Neutron Scattering Division, Oak Ridge National Laboratory, MS 6473, Oak Ridge, Tennessee 37831 United States.

Mordenite ((Ca,Na,K)AlSiO·7HO) is a natural and synthetic nanoporous zeolite containing several channels of different sizes in its structure. Because of this, its structure provides an important opportunity to study the relationship between confined and ultraconfined water as these channels have sizes between those typical of these water environments. In this study, the properties of water molecules in these environments were analyzed using inelastic and quasielastic neutron spectroscopy of a natural mordenite.

View Article and Find Full Text PDF

This study presents a biopreservation method using sourdough co-fermented with Fructilactobacillus sanfranciscensis and Propionibacterium freudenreichii, optimizing conditions to 220 hydration and 24 h fermentation. The composite sourdough bread quality was evaluated through physicochemical, storage, sensory, and microbial tests, with mechanisms analyzed based on microstructure, rheology, and dough structure. Results showed that: first, the composite sourdough enhanced bread physicochemical properties, increasing volume, height-to-diameter ratio, elasticity, and resilience, while reducing baking loss, hardness, chewiness, and adhesiveness.

View Article and Find Full Text PDF