Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The non-linear complex relationships among the process variables in wastewater and waste gas treatment systems possess a significant challenge for real-time systems modelling. Data driven artificial intelligence (AI) tools are increasingly being adopted to predict the process performance, cost-effective process monitoring, and the control of different waste treatment systems, including those involving resource recovery. This review presents an in-depth analysis of the applications of emerging AI tools in physico-chemical and biological processes for the treatment of air pollutants, water and wastewater, and resource recovery processes. Additionally, the successful implementation of AI-controlled wastewater and waste gas treatment systems, along with real-time monitoring at the industrial scale are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.122386DOI Listing

Publication Analysis

Top Keywords

treatment systems
16
wastewater waste
12
waste gas
12
gas treatment
12
artificial intelligence
8
intelligence tools
8
resource recovery
8
treatment
5
systems
5
application artificial
4

Similar Publications

Dual function of itaconic acid from against .

Plant Dis

September 2025

Shenyang Agricultural University, College of Plant Protection, Nematology Institute of Northern China, Shenyang, China;

Root-knot nematodes (Meloidogyne spp.) cause catastrophic yield losses in global agriculture. This study identified itaconic acid (IA), through comparative metabolomic analysis (the study of small molecules in biological systems), as a key virulence-related metabolite produced by the fungus Trichoderma citrinoviride Snef1910.

View Article and Find Full Text PDF

Background: Diabetic foot ulcers (DFUs) are a major clinical challenge, particularly among patients with refractory ulcers, that often lead to severe complications such as infection, amputation, and high mortality. Innovations supported by strong clinical evidence have the potential to improve healing outcomes, enhance quality of life, and reduce the economic burden on individuals and health care systems.

Objective: To describe the design of the concurrent optical and magnetic stimulation (COMS) therapy Investigational Device Exemption (IDE) study for refractory DFUs (MAVERICKS) trial.

View Article and Find Full Text PDF

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

Background: The increasing amount of data routinely collected on ICUs poses a challenge for clinicians which is aggravated with data-heavy therapies like Continuous Kidney Replacement Therapy (CKRT). We developed the CKRT Supporting Software Prototype (CKRT-SSP), a clinical decision support system for use before, during and after CKRT. The aim of this user experience (UX) study was to prospectively evaluate CKRT-SSP in terms of usability, user experience, and workload in a simulated ICU setting.

View Article and Find Full Text PDF

This review highlights the integration of drug repurposing and nanotechnology-driven delivery strategies as innovative approaches to enhance the antifungal activity of statins against mucosal candidiasis, providing a framework for future translational research and clinical application. The rising prevalence of antifungal resistance and virulence factors of Candida albicans underscore the limitations of current therapies. Statins, commonly used as lipid-lowering agents, have emerged as attractive repurposed drug candidates due to their ability to interfere with fungal ergosterol biosynthesis and Ras-mediated signaling pathways.

View Article and Find Full Text PDF