A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Decoupled tin-silver batteries with long cycle life and power output stability based on dendrite-free tin anode and halide insertion cathode chemistry. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Conventional Ag-Zn batteries have historically faced the challenge of poor cycling stability, rooting in issues associated with Ag cathode dissolution and Zn anode dendrites. Herein, we present a pioneering decoupled Sn-Ag cell, which features two chambers separated by a cation-exchange membrane, containing a dendrite-free Sn metal anode immersed in an alkaline anolyte, and an Ag nanowires/carbon nanotube 3D thick-network cathode in a neutral catholyte. Benefiting from the achieved high electroplating/stripping stability of the metallic Sn anode in the alkaline electrolyte and the electrochemical reversibility of the Ag/AgCl cathode redox couple in the neutral electrolyte, the assembled decoupled Sn-Ag cell demonstrates superior cycling stability, retaining 82.4% of its initial capacity even after 4000 cycles (2 mA cm), significantly outperforming both the contrastive decoupled Ag-Zn cell (1500 cycles) and conventional alkaline Ag-Zn batteries (<100 cycles). Furthermore, through the integration of the decoupled Sn-Ag battery with solar cells and power management circuits, an intelligent power system of photovoltaic charging and energy storage was designed, demonstrating its practical viability through maintenance-free charging-discharging during day-night cycles. This research not only significantly increases the lifespan of Ag-batteries with an ultra-flat voltage platform but also opens avenues for the decoupled design of a wide variety of aqueous battery systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376085PMC
http://dx.doi.org/10.1039/d4sc04851bDOI Listing

Publication Analysis

Top Keywords

ag-zn batteries
8
cycling stability
8
decoupled sn-ag
8
sn-ag cell
8
decoupled
4
decoupled tin-silver
4
tin-silver batteries
4
batteries long
4
long cycle
4
cycle life
4

Similar Publications