98%
921
2 minutes
20
Marine phytoplankton communities are pivotal in biogeochemical cycles and impact global climate change. However, the dynamics of the dinoflagellate community, its co-occurrence relationship with other eukaryotic plankton communities, and environmental factors remain poorly understood. In this study, we aimed to analyze the temporal changes in the eukaryotic plankton community using a 18S rDNA metabarcoding approach. We performed intensive monitoring for 439 days at intervals of three days during the period from November 2018 to June 2020 (n = 260) in Jangmok Bay Time-series Monitoring Site in South Korea. Among the 16,224 amplicon sequence variants (ASVs) obtained, dinoflagellates were the most abundant in the plankton community (38 % of total relative abundance). The dinoflagellate community was divided into 21 groups via cluster analysis, which showed an annually similar distribution of low-temperature periods. Additionally, we selected 11 taxa that had an occurrence mean exceeding 1 % of the total dinoflagellate abundance, accounting for 93 % of the total dinoflagellate community: namely Heterocapsa rotundata, Gymnodinium sp., Akashiwo sanguinea, Amoebophrya sp., Euduboscquella sp., Spiniferites ramosus, Dissodinium pseudolunula, Sinophysis sp., Karlodinium veneficum, and Katodinium glaucum. The key dinoflagellate species were well represented at temporally variable levels over an entire year. Heterocapsa rotundata was not significantly affected by water temperature, whereas its dynamics were largely influenced by strong predation pressure, competition, and/or the supplementation of food sources. The growth of A. sanguinea was associated with dissolved inorganic phosphorus concentrations, while Euduboscquella sp. showed a significant relationship with D. pseudolunula and K. glaucum, largely representing a positive association that implies possible parasitic mechanisms. This study demonstrated interactions between key dinoflagellate species and the environment, as well as parasites, predators, competitors, and feeders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.hal.2024.102698 | DOI Listing |
Protist
August 2025
Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Kita-10 Nishi-8, Kita-Ku, Sapporo 0600810, Japan.
Kryptoperidinium belongs to a group of dinophytes hosting a diatom as an endosymbiont and is currently considered to comprise a single, putatively bloom-forming and harmful species only. Molecular phylogenetics indicate the existence of a second distinct lineage and therefore species new to science, which we here formally describe as Kryptoperidinium secundum sp. nov.
View Article and Find Full Text PDFISME Commun
January 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China.
Eukaryotic harmful and toxic microalgae, along with their derived toxins, pose significant threats to seafood safety, human health, and marine ecosystems. Here, we developed a novel full-length 18S rRNA database for harmful and toxic microalgae and combined metabarcoding with toxin analyses to investigate the ecological patterns of phytoplankton communities and the underlying mechanism of associated toxic microalgae risks. We identified 79 harmful and toxic species in Hong Kong's coastal waters, with dinoflagellates and diatoms representing the majority of toxic and harmful taxa, respectively.
View Article and Find Full Text PDFEnviron Pollut
September 2025
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266071, China; University of Chinese Academy
In Summer 2024, a dinoflagellate bloom broke out in the Bohai Sea along the north coast of Shandong peninsula. By approaches of morphological observation, pigment analysis and targeted gene sequencing, the bloom causative species was identified as dinoflagellate Takayama acrotrocha. The satellite imagery indicated that the bloom lasted from August 24 to September 8, and distributed mainly in the coastal waters extending from the Yellow River estuary to Yantai and Weihai, marking the northward expansion of this algal species along the coast of China.
View Article and Find Full Text PDFMicroorganisms
August 2025
Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
SPX domain-containing proteins (SPXc) are crucial for regulating phosphorus (P) homeostasis in plants. Recently, the SPX gene was identified in the diatom model and shown to serve as a negative regulator of P acquisition. Whether occurs in dinoflagellates is unclear.
View Article and Find Full Text PDFLab Chip
August 2025
Istituto di Scienze Applicate e Sistemi Intelligenti (ISASI), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy.
Marine ecosystems are in the spotlight, because environmental changes are threatening biodiversity and ecological functions. In this context, microalgae play key ecological roles both in planktonic and benthic ecosystems. Consequently, they are considered indispensable targets for global monitoring programs.
View Article and Find Full Text PDF