Mechanistic Insights from Density Functional Theory into Rh/Acid-Catalyzed Synthesis of 1,2-Dihydroquinolines via Skeleton-Reorganizing Coupling of Cycloheptatriene and Amines.

J Org Chem

Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Density functional theory calculations were conducted to refine our understanding at the molecular level of the synthesis of fused 1,2-dihydroquinolines through Rh- and acid-catalyzed skeleton-reorganizing coupling reactions of cycloheptatriene with amines. The results reveal that the reaction progresses via cascade catalysis, consisting of consecutive steps of Rh-catalyzed intermolecular coupling involving two Rh-Rh-Rh transformations with a maximum energy barrier of 27.1 kcal/mol, followed by acid-catalyzed intramolecular skeleton reorganization with a peak energy barrier of 23.3 kcal/mol. The most significant finding of this work is the identification of a new oxidation-reduction mode of the Rh center. This mode is achieved via migration of a proton from the ammonium ion to the metal center and nucleophilic attack-induced intermolecular reductive coupling, distinguishing it from the conventional oxidative addition-reductive elimination process. The acid-catalyzed intramolecular skeleton reorganization necessitates the assistance of a second HOTs molecule, along with its conjugate base, which sequentially facilitates retro-Mannich-type C-C cleavage and the isomerization of the terminal imine to enamine via acid-base catalysis. Our calculations also explain why the azabicyclic tropene byproduct does not compete with the formation of the fused 1,2-dihydroquinoline product. These theoretical insights are expected to provide valuable guidance for further improvements in the efficiency of skeleton-reorganizing coupling reactions between cycloheptatriene and amines.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.4c01458DOI Listing

Publication Analysis

Top Keywords

skeleton-reorganizing coupling
12
cycloheptatriene amines
12
density functional
8
functional theory
8
coupling reactions
8
reactions cycloheptatriene
8
energy barrier
8
acid-catalyzed intramolecular
8
intramolecular skeleton
8
skeleton reorganization
8

Similar Publications

Mechanistic Insights from Density Functional Theory into Rh/Acid-Catalyzed Synthesis of 1,2-Dihydroquinolines via Skeleton-Reorganizing Coupling of Cycloheptatriene and Amines.

J Org Chem

September 2024

Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

Density functional theory calculations were conducted to refine our understanding at the molecular level of the synthesis of fused 1,2-dihydroquinolines through Rh- and acid-catalyzed skeleton-reorganizing coupling reactions of cycloheptatriene with amines. The results reveal that the reaction progresses via cascade catalysis, consisting of consecutive steps of Rh-catalyzed intermolecular coupling involving two Rh-Rh-Rh transformations with a maximum energy barrier of 27.1 kcal/mol, followed by acid-catalyzed intramolecular skeleton reorganization with a peak energy barrier of 23.

View Article and Find Full Text PDF

Skeletal reorganization reactions have emerged as an intriguing tool for converting readily available compounds into complicated molecules inaccessible by traditional methods. Herein, we report a unique skeleton-reorganizing coupling reaction of cycloheptatriene and cycloalkenones with amines. In the presence of Rh/acid catalysis, cycloheptatriene can selectively couple with anilines to deliver fused 1,2-dihydroquinoline products.

View Article and Find Full Text PDF