A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Fuzzy inference system enabled neural network feedforward compensation for position leap control of DC servo motor. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To improve dynamic performance and steady-state accuracy of position leap control of the direct current (DC) servo motor, a fuzzy inference system (FIS) enabled artificial neural network (ANN) feedforward compensation control method is proposed in this study. In the method, a proportional-integral-derivative (PID) controller is used to generate the baseline control law. Then, an ANN identifier is constructed to online learn the reverse model of the DC servo motor system. Meanwhile, the learned parameters are passed in real-time to an ANN compensator to provide feedforward compensation control law accurately. Next, according to system tracking error and network modeling error, an FIS decider consisting of an FI basic module and an FI finetuning module is developed to adjust the compensation quantity and prevent uncertain disturbance from undertrained ANN adaptively. Finally, the feasibility and efficiency of the proposed method are verified by the tracking experiments of step and square signals on the DC servo motor testbed. Experimental results show that the proposed FIS-enabled ANN feedforward compensation control method achieves lower overshoot, faster adjustment, and higher precision than other comparative control methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379902PMC
http://dx.doi.org/10.1038/s41598-024-71647-1DOI Listing

Publication Analysis

Top Keywords

feedforward compensation
16
servo motor
16
compensation control
12
fuzzy inference
8
inference system
8
neural network
8
position leap
8
leap control
8
ann feedforward
8
control method
8

Similar Publications