98%
921
2 minutes
20
Polychlorinated biphenyl compounds (PCBs) are industrial chemicals whose production was discontinued in the early nineties in most countries. Sill, PCBs are detectable in pristine and remote locations. Occurrence in regions such as Southern Oceans and Antarctica are influenced by the global, and regional, cycling. Here, we studied the surface and deep ocean distribution of indicator- and dioxin-like PCB congeners in the Southern Indian Ocean (SIO), and the coast of Antarctica (COA) during the tenth Indian Southern Ocean Expedition (SOE-10), December 2017-February 2018. ∑PCBs in SIO surface waters ranged from 3.8 to 167.1 pg L (average ± standard deviation: 35.7 ± 48.4 pg L), and in COA from 1.0 to 41.8 pg L (13.8 ± 12.7 pg L), respectively. A noticeable gradient was observed, with higher PCBs levels in northern latitudes than southern latitudes in the SIO, and higher levels in the eastern longitudes compared to western longitudes in the COA. Results suggest the influence of secondary sources, or re-emission, of PCBs in the Southern Oceans and Antarctica. Both regions showed notable PCB levels in surface and deep waters (up to 1000 m) due to ongoing surface sources and remineralization processes in deeper waters. Multimedia modeling with the global model (BETR-Global) suggests the SIO act as a net sink for PCBs in the ocean.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143241 | DOI Listing |
Int J Biol Macromol
September 2025
The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
This study explores the extraction of polysaccharides from Nostoc commune Vauch. using ultrasonic-assisted three-phase partitioning with deep eutectic solvents (UA-TPP-DES). Response surface methodology was used to determine the optimized UA-TPP-DES conditions as follows: a 1: 2 M ratio of lauric acid to terpineol, 30 min of ultrasonication at 60 °C with 100 W power, 20 % moisture content, 20 % w/w (NH)SO concentration, and a 2: 1 top-to-bottom phase volume ratio.
View Article and Find Full Text PDFComput Biol Med
September 2025
Department of Electrical and Computer Engineering and the Institute of Biomedical Engineering, University of New Brunswick, Fredericton, E3B 5A3, NB, Canada.
Pattern recognition-based myoelectric control is traditionally trained with static or ramp contractions, but this fails to capture the dynamic nature of real-world movements. This study investigated the benefits of training classifiers with continuous dynamic data, encompassing transitions between various movement classes. We employed both conventional (LDA) and deep learning (LSTM) classifiers, comparing their performance when trained with ramp data, continuous dynamic data, and an LSTM pre-trained with a self-supervised learning technique (VICReg).
View Article and Find Full Text PDFIEEE Trans Biomed Eng
September 2025
Objective: Transcranial ultrasound (US) stimulation (TUS) has emerged as a promising technique for minimally invasive, localized, deep brain stimulation. However, indirect auditory effects during neuromodulation require careful consideration, particularly in experiments with rodents. One method to prevent auditory responses involves applying tapered envelopes to US bursts.
View Article and Find Full Text PDFACS Omega
September 2025
National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
Conventional acidizing struggles to remove complex, organic-rich scales in oil wells, and while strong organic solvents can help, their high cost and safety risks limit field use. To overcome these shortcomings, we developed a low-cost, safe permeability-enhanced-dispersion (PD) technique that first loosens and disperses the scale and then applies acid for thorough cleanup. The PD fluid (DL) contains a mutually soluble fatty alcohol amide phosphate dispersant (DL-F), ethanol, a surfactant blend, and a self-generating acid.
View Article and Find Full Text PDFFood Chem X
August 2025
College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 5
Enhancing both structural integrity and nutritional properties is crucial for developing a functional three-dimensional (3D)-printed surimi formulation. Herein, deep-sea salt was used as a substitute for conventional salt to develop 3D-printed surimi. The physicochemical properties, sensory scores, microstructural examinations, chemical bonding analysis, digestion studies, and antioxidant activity of the 3D-printed surimi were systematically evaluated.
View Article and Find Full Text PDF