Environ Monit Assess
September 2025
The study investigated bioaccumulation of metals in edible bivalves and crustaceans in the Mandovi Estuary, assessing the potential toxicity to biota and human consumers. Additionally, it examined the phytoremediation potential of mangrove species in the Mandovi Estuary. The concentration of essential (Fe, Mn, Zn, Cu, Co and Ni) and toxic (Hg) metals exceeded the upper crustal average, indicating their anthropogenic contribution to estuarine environment.
View Article and Find Full Text PDFPolychlorinated biphenyl compounds (PCBs) are industrial chemicals whose production was discontinued in the early nineties in most countries. Sill, PCBs are detectable in pristine and remote locations. Occurrence in regions such as Southern Oceans and Antarctica are influenced by the global, and regional, cycling.
View Article and Find Full Text PDFAntarctica is a remote and pristine region. Yet it plays a vital role in biogeochemical cycles of global anthropogenic contaminants, such as persistent organic pollution (POPs). This work reports the distribution of legacy and new POPs in surface and depth profiles/deeper water of the Southern Indian Ocean (SIO) and the coast of Antarctica (COA).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2017
Mercury (Hg) reduction by humic substances (HS) in the aquatic medium under the dark condition is a poorly understood but important process in Hg biogeochemical cycling. In this study, an effort was made to provide a better understanding of Hg(II) reduction by well-characterized humic substances under dark condition. Reduction of Hg(II) by dissolved HS in aquatic systems increases with increasing Hg loading.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
May 2016
Total Hg distributions and its speciation were determined in two sediment cores collected from the western continental marginal high of India. Total Hg content in the sediment was found to gradually increase (by approximately two times) towards the surface in both the cores. It was found that Hg was preferentially bound to sulfide under anoxic condition.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2016
Distribution of metals in different binding phases of estuarine sediments provides chemically significant description of metal-sediment interactions. This study describes the influences of ligand field stabilization energy (LFSE), Jahn-Teller effect, and water exchange rate (k-w) on metal distribution in different binding phases of estuarine sediments. It was found that Cu had highest affinity for organic binding phases in the studied sediments followed by Ni and Pb.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
July 2015
This study demonstrates that under abiotic dark conditions in aquatic system, humic substances are not only capable of converting Hg(II) to Hg(0) but also able to bind Hg(II) ion. The degree of Hg(II) reduction is significantly influenced by the ratio of -COOH/-OH groups and the sulfur content in the HS, revealing a strong competition between complexation and reduction of Hg(II). This study suggests that abiotic and dark Hg(II) reduction depends on the pH and salinity of aqueous medium.
View Article and Find Full Text PDFThe current study aims to understand the speciation and fate of Cu complexes in hydrothermally altered sediments from the Central Indian Ocean Basin and assess the probable impacts of deep-sea mining on speciation of Cu complexes and assess the Cu flux from this sediment to the water column in this area. This study suggests that most of the Cu was strongly associated with different binding sites in Fe-oxide phases of the hydrothermally altered sediments with stabilities higher than that of Cu-EDTA complexes. The speciation of Cu indicates that hydrothermally influenced deep-sea sediments from Central Indian Ocean Basin may not significantly contribute to the global Cu flux.
View Article and Find Full Text PDFThis is the first study to describe distribution and speciation of Hg in coastal sediments from the central east coast of India. The concentrations of Hg in the studied sediments were found to be much lower than the Hg concentration recommended in coastal sediments by the United State Environmental Protection Agency and the Canadian Council of Ministers of the Environment for the protection of aquatic life. This study suggests that the interactions between Hg and coastal sediments are influenced by particle size (sand, silt and clay) of the sediments and the total organic carbon (TOC) content in the sediments.
View Article and Find Full Text PDF