Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this study, three BODIPY-based fluorescent probes were designed and synthesized. The ultraviolet-visible spectra, fluorescence spectra, smartphone color recognition application and bioimaging were utilized to evaluate the capacity of the probes. By comparing key parameters, BDP-SIN had optimal performances including fastest response (10 min), highest signal-to-noise ratio (815 times) and lowest limit of detection (LOD = 49 nM). The recovery rate ranged from 92.04 % to 103.25 %. Meanwhile, BDP-SIN was triumphantly employed for determination of Cys in different daily food samples. Moreover, the test strips and microporous filter membrane loaded with BDP-SIN were developed for the portable real-time visualization and quantitative detection of Cys in food samples, which the contents ranged from 0.27 μM to 0.49 μM. Besides, BDP-SIN could image Cys in the living cells and mice. The novelty of this work was that developed an effective tool for researching the roles of Cys in food industry and living organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.141044 | DOI Listing |