Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bacterial motility over surfaces is crucial for colonization, biofilm formation, and pathogenicity. Surface motility in and is traditionally believed to rely on flagellar propulsion. Here, we report a novel mode of motility, termed "swashing," where these bacteria migrate on agar surfaces without functional flagella. Mutants lacking flagellar filaments and motility proteins exhibit rapid surface migration comparable to wild-type strains. Unlike previously described sliding motility, swashing is inhibited by surfactants and requires fermentable sugars. We propose that the fermentation of sugars at the colony edge produces osmolytes, creating local osmotic gradients that draw water from the agar, forming a fluid bulge that propels the colony forward. Our findings challenge the established view that flagellar propulsion is required for surface motility in and , and highlight the role of a fermentation in facilitating bacterial spreading. This discovery expands our understanding of bacterial motility, offering new insights into bacterial adaptive strategies in diverse environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370582PMC
http://dx.doi.org/10.1101/2024.08.21.609010DOI Listing

Publication Analysis

Top Keywords

surface migration
8
bacterial motility
8
surface motility
8
flagellar propulsion
8
motility
7
swashing motility
4
motility novel
4
novel propulsion-independent
4
propulsion-independent mechanism
4
surface
4

Similar Publications

Fluorinated Imidazolidinium Cations as a Fluorine-Lean Interface Repairing Agent for Li-Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.

Li-metal batteries promise ultrahigh energy density, but their application is limited by Li-dendrite growth. Theoretically, fluorine-containing anions such as bis(fluorosulfonyl)imide (FSI) in electrolytes can be reduced to form LiF-rich solid-electrolyte interphases (SEIs) with high Young's modulus and ionic conductivity that can suppress dendrites. However, the anions migrate toward the cathode during the charging process, accompanied by a decrease in the concentration of interfacial anions near the anode surface.

View Article and Find Full Text PDF

Sepiolite (SP) is a naturally occurring sedimentary silicate clay mineral known for its unique structure, high surface area, and rich surface chemistry, particularly silanol groups (Si-OH), which facilitate strong interfacial interactions in polymer matrices. Its ability to act as a nanofiller has gained attention in the development of advanced biopolymer nanocomposites, especially for food packaging applications where material performance, sustainability, and safety are critical. SP enhances the thermal stability, barrier properties, and mechanical strength of starch and other biopolymer matrices, key factors in extending shelf life.

View Article and Find Full Text PDF

NPY-functionalized niosomes for targeted delivery of margatoxin in breast cancer therapy.

Med Oncol

September 2025

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.

View Article and Find Full Text PDF

Background: Prostate cancer is one of the principal malignancies threatening human health, and the development of castration resistance often constitutes a major cause of treatment failure in its management.

Methods: To elucidate the potential association between programmed death-ligand 1 (PD-L1) and castration resistance in prostate cancer, we analyzed the expression levels of PD-L1 in both primary prostate cancer tissues and castration-resistant prostate cancer (CRPC) specimens as well as in corresponding cell lines by using western blots and immunohistochemistry. Then, we explored the specific mechanisms through transcriptomic sequencing technology.

View Article and Find Full Text PDF

High entropy electrolytes show great potential in the design of next generation batteries. Demonstrating how salt components of high entropy electrolytes influence the charge storage performance of batteries is essential in the tuning and design of such advanced electrolytes. This study investigates the transport and interfacial properties for lithium hexafluorophosphate (LiPF) in ethylene carbonate and dimethyl carbonate (EC/DMC) solvent with commonly used additives for high entropy electrolytes (LiTFSI, LiDFOB, and LiNO).

View Article and Find Full Text PDF