Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neuroepithelial tumors with fusion of PLAGL1 or amplification of PLAGL1/PLAGL2 have recently been described often with ependymoma-like or embryonal histology respectively. To further evaluate emerging entities with PLAG-family genetic alterations, the histologic, molecular, clinical, and imaging features are described for 8 clinical cases encountered at St. Jude (EWSR1-PLAGL1 fusion n = 6; PLAGL1 amplification n = 1; PLAGL2 amplification n = 1). A histologic feature observed on initial resection in a subset (4/6) of supratentorial neuroepithelial tumors with EWSR1-PLAGL1 rearrangement was the presence of concurrent ependymal and ganglionic differentiation. This ranged from prominent clusters of ganglion cells within ependymoma/subependymoma-like areas, to interspersed ganglion cells of low to moderate frequency among otherwise ependymal-like histology, or focal areas with a ganglion cell component. When present, the combination of ependymal-like and ganglionic features within a supratentorial neuroepithelial tumor may raise consideration for an EWSR1-PLAGL1 fusion, and prompt initiation of appropriate molecular testing such as RNA sequencing and methylation profiling. One of the EWSR1-PLAGL1 fusion cases showed subclonal INI1 loss in a region containing small clusters of rhabdoid/embryonal cells, and developed a prominent ganglion cell component on recurrence. As such, EWSR1-PLAGL1 neuroepithelial tumors are a tumor type in which acquired inactivation of SMARCB1 and development of AT/RT features may occur and lead to clinical progression. In contrast, the PLAGL2 and PLAGL1 amplified cases showed either embryonal histology or contained an embryonal component with a significant degree of desmin staining, which could also serve to raise consideration for a PLAG entity when present. Continued compilation of associated clinical data and histopathologic findings will be critical for understanding emerging entities with PLAG-family genetic alterations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370057PMC
http://dx.doi.org/10.1186/s40478-024-01809-9DOI Listing

Publication Analysis

Top Keywords

neuroepithelial tumors
16
supratentorial neuroepithelial
12
ewsr1-plagl1 fusion
12
concurrent ependymal
8
ependymal ganglionic
8
ganglionic differentiation
8
tumors ewsr1-plagl1
8
ewsr1-plagl1 rearrangement
8
plagl1 amplification
8
embryonal histology
8

Similar Publications

Background: The dysregulation of long-chain noncoding RNAs (lncRNAs) causes several complex human diseases including neurodegenerative disorders across the globe.

Methods And Results: This study aimed to investigate lncRNA expression profiles of Withania somnifera (WS)-treated human neuroblastoma SK-N-SH cells at different timepoints (3 & 9 h) and concentrations (50 & 100 µg/mL) using RNA sequencing. Differential gene expression analysis showed a total of 4772 differentially expressed lncRNAs, out of which 3971 were upregulated and 801 were downregulated compared to controls.

View Article and Find Full Text PDF

Unraveling epigenetic drivers of immune evasion in gliomas: mechanisms and therapeutic implications.

Front Immunol

September 2025

Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.

Gliomas are the most common primary malignant tumors of the central nervous system (CNS), and despite progress in molecular diagnostics and targeted therapies, their prognosis remains poor. In recent years, immunotherapy has emerged as a promising treatment modality in cancer therapy. However, the inevitable immune evasion by tumor cells is a key barrier affecting therapeutic efficacy.

View Article and Find Full Text PDF

A bridge too far: Identification of bridge cell states as drivers of plasticity in neuroblastoma.

Dev Cell

September 2025

Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA. Electronic address:

Understanding tumor cell plasticity, a potential mechanism driving therapeutic resistance in many cancers, represents a key oncologic challenge. In this issue of Developmental Cell, Xu et al. leverage neuroblastoma as a tractable model for exploring mechanisms of tumor plasticity and provide key insights into drivers of tumor cell states.

View Article and Find Full Text PDF

Background: The aim of this review is to present the role of intraoperative flow cytometry (IFC) in the intracranial tumor surgery. This scoping review aims to summarize current evidence on the intraoperative use of IFC in patients with intracranial tumors.

Methods: A comprehensive literature search was conducted in the Medline, Cochrane and Scopus databases up to January 21, 2025.

View Article and Find Full Text PDF