Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

IL-23 is a cytokine produced by myeloid cells that drives the T helper 17 pathway and plays an essential role in the pathophysiology of plaque psoriasis. IL-23 activation initiates a cascade of cytokines subsequently inducing the expression of many psoriasis-related proteins. This study aimed to better understand the underlying mechanisms driving the differences between IL-23 and IL-17A blockade in patients with psoriasis and their implications for durability of clinical responses. Serum and/or skin biopsies were isolated from patients treated with guselkumab or secukinumab for evaluation of potential biomarkers of pharmacodynamic response to treatment. Guselkumab treatment led to significantly greater reductions of IL-17F and IL-22 serum levels than treatment with secukinumab at weeks 24 and 48, demonstrating sustained regulation of the IL-23/T helper 17 pathway. Analyses of proteomic and transcriptomic profiles of patient sera and skin biopsies demonstrated differential regulation of proteins involved in chemokine, TNF, and relevant immune signaling pathways to a greater degree with guselkumab than with secukinumab treatment. These data provide insights into the differences between the mechanisms and impact of IL-23 and IL-17A blockade in psoriasis, with implications for efficacy observations and treatment paradigms. Trial Registration: The original study was registered at ClinicalTrials.gov (NCT03090100).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367549PMC
http://dx.doi.org/10.1016/j.xjidi.2024.100297DOI Listing

Publication Analysis

Top Keywords

helper pathway
8
il-23 il-17a
8
il-17a blockade
8
psoriasis implications
8
skin biopsies
8
guselkumab secukinumab
8
treatment
5
differential pharmacodynamic
4
pharmacodynamic effects
4
effects psoriatic
4

Similar Publications

Uveitis is an inflammatory eye disease, and Longdan Xiegan Decoction (LXD) has been used to treat uveitis. However, the underlying mechanisms have not fully been addressed. The present study aimed to provide new insights into LXD ameliorating inflammatory response of experimental autoimmune uveitis (EAU) and regulating T helper (Th) cell differentiation via the interaction between microRNA (miRNA) and mRNA.

View Article and Find Full Text PDF

CD19CD11cT-bet B cells in myasthenia gravis: a potential biomarker.

Front Neurol

August 2025

Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China.

Background: Myasthenia gravis (MG), an autoimmune disorder characterized by B cell-driven autoantibody production, exhibits heterogeneous B cell subsets dysregulation and incompletely defined signaling mechanisms.

Methods: A cohort of 20 naïve MG patients positive for anti-acetylcholine receptor (AChR) antibodies and 15 healthy controls was analyzed. Peripheral blood mononuclear cells underwent proteomic profiling, flow cytometry (age-associated B cells (ABCs), plasma cells, T follicular helper cells, and regulatory B cells), and western blot validation of nuclear factor kappa-B (NF-κB)/cellular reticuloendotheliosis oncogene homolog (c-Rel) expression.

View Article and Find Full Text PDF

Objective: This study aims to elucidate how butyrate, a short-chain fatty acid, regulates the Treg/Th17 balance in ulcerative colitis (UC) via the cAMP-PKA/mTOR signaling pathway, offering novel treatment strategies.

Methods: Dextran sulfate sodium (DSS) was used to induce ulcerative colitis in a mouse model. Various butyrate dosages were administered to the mice.

View Article and Find Full Text PDF

Rheumatoid arthritis is a chronic autoimmune disease with joint destruction and chronic inflammation symptoms. Conventional therapy focuses on the prevention of the progression of the disease and management of symptoms, rather than curing the disease. Emerging therapies have been developed to cure the disease, which combines conventional therapies with a novel drug delivery system.

View Article and Find Full Text PDF

Tissue-resident memory T cells (TRM) remain in nonlymphatic barrier tissues for extended periods and are deeply involved in immune memory at the site of inflammation. Here, we employed multilayered single-cell analytic approaches including chromatin, gene, and protein profiling to characterize a unique CD4+ TRM subset present in the inflamed gut mucosa of Crohn's disease patients. We identified two key transcription factors, RUNX2 and BHLHE40, as regulators of pathologically relevant CD4+ TRM.

View Article and Find Full Text PDF