Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Male infertility can be caused by chromosomal abnormalities, mutations and epigenetic defects. Epigenetic modifiers pre-program hundreds of spermatogenic genes in spermatogonial stem cells (SSCs) for expression later in spermatids, but it remains mostly unclear whether and how those genes are involved in fertility. Here, we report that Wfdc15a, a WFDC family protease inhibitor pre-programmed by KMT2B, is essential for spermatogenesis. We found that Wfdc15a is a non-canonical bivalent gene carrying both H3K4me3 and facultative H3K9me3 in SSCs, but is later activated along with the loss of H3K9me3 and acquisition of H3K27ac during meiosis. We show that WFDC15A deficiency causes defective spermiogenesis at the beginning of spermatid elongation. Notably, depletion of WFDC15A causes substantial disturbance of the testicular protease-antiprotease network and leads to an orchitis-like inflammatory response associated with TNFα expression in round spermatids. Together, our results reveal a unique epigenetic program regulating innate immunity crucial for fertility.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.202834DOI Listing

Publication Analysis

Top Keywords

non-canonical bivalent
8
bivalent gene
8
wfdc15a
5
gene wfdc15a
4
wfdc15a controls
4
controls spermatogenic
4
spermatogenic protease
4
protease immune
4
immune homeostasis
4
homeostasis male
4

Similar Publications

Unlabelled: HIV cure strategies that aim to induce viral reactivation for immune clearance leverage latency reversal agents to modulate host pathways which directly or indirectly facilitate viral reactivation. Inhibition of bromo and extra-terminal domain (BET) family member BRD4 reverses HIV latency, but enthusiasm for the use of BET inhibitors in HIV cure studies is tempered by concerns over inhibition of other BET family members and dose-limiting toxicities in oncology trials. Here, we evaluated the potential for bivalent chemical degraders targeted to the BET family as alternative latency reversal agents.

View Article and Find Full Text PDF

Male infertility can be caused by chromosomal abnormalities, mutations and epigenetic defects. Epigenetic modifiers pre-program hundreds of spermatogenic genes in spermatogonial stem cells (SSCs) for expression later in spermatids, but it remains mostly unclear whether and how those genes are involved in fertility. Here, we report that Wfdc15a, a WFDC family protease inhibitor pre-programmed by KMT2B, is essential for spermatogenesis.

View Article and Find Full Text PDF

Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and emerging therapeutic target that is overexpressed in most castration-resistant prostate cancers and implicated as a driver of disease progression and resistance to hormonal therapies. Here we define the lineage-specific action and differential activity of EZH2 in both prostate adenocarcinoma and neuroendocrine prostate cancer (NEPC) subtypes of advanced prostate cancer to better understand the role of EZH2 in modulating differentiation, lineage plasticity, and to identify mediators of response and resistance to EZH2 inhibitor therapy. Mechanistically, EZH2 modulates bivalent genes that results in upregulation of NEPC-associated transcriptional drivers (e.

View Article and Find Full Text PDF

Polycomb function in early mouse development.

Cell Death Differ

January 2025

Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.

Epigenetic factors are crucial for ensuring proper chromatin dynamics during the initial stages of embryo development. Among these factors, the Polycomb group (PcG) of proteins plays a key role in establishing correct transcriptional programmes during mouse embryogenesis. PcG proteins are classified into two complexes: Polycomb repressive complex 1 (PRC1) and PRC2.

View Article and Find Full Text PDF

Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1.

View Article and Find Full Text PDF