98%
921
2 minutes
20
Background And Objective: The incidence of facial fractures is on the rise globally, yet limited studies are addressing the diverse forms of facial fractures present in 3D images. In particular, due to the nature of the facial fracture, the direction in which the bone fractures vary, and there is no clear outline, it is difficult to determine the exact location of the fracture in 2D images. Thus, 3D image analysis is required to find the exact fracture area, but it needs heavy computational complexity and expensive pixel-wise labeling for supervised learning. In this study, we tackle the problem of reducing the computational burden and increasing the accuracy of fracture localization by using a weakly-supervised object localization without pixel-wise labeling in a 3D image space.
Methods: We propose a Very Fast, High-Resolution Aggregation 3D Detection CAM (VFHA-CAM) model, which can detect various facial fractures. To better detect tiny fractures, our model uses high-resolution feature maps and employs Ablation CAM to find an exact fracture location without pixel-wise labeling, where we use a rough fracture image detected with 3D box-wise labeling. To this end, we extract important features and use only essential features to reduce the computational complexity in 3D image space.
Results: Experimental findings demonstrate that VFHA-CAM surpasses state-of-the-art 2D detection methods by up to 20% in sensitivity/person and specificity/person, achieving sensitivity/person and specificity/person scores of 87% and 85%, respectively. In addition, Our VFHA-CAM reduces location analysis time to 76 s without performance degradation compared to a simple Ablation CAM method that takes more than 20 min.
Conclusion: This study introduces a novel weakly-supervised object localization approach for bone fracture detection in 3D facial images. The proposed method employs a 3D detection model, which helps detect various forms of facial bone fractures accurately. The CAM algorithm adopted for fracture area segmentation within a 3D fracture detection box is key in quickly informing medical staff of the exact location of a facial bone fracture in a weakly-supervised object localization. In addition, we provide 3D visualization so that even non-experts unfamiliar with 3D CT images can identify the fracture status and location.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2024.108379 | DOI Listing |
Turk J Pediatr
September 2025
Department of Anesthesiology, All India Institute of Medical Sciences, Patna, India.
Background: Umbilical arterial catheterisation is a common intervention performed in the neonatal intensive care unit (NICU) especially in extremely preterm and extremely low birth weight neonates. Rarely catheter fracture or breakage can occur, leaving behind part of the catheter in the aorta. A handful of cases have been reported in the literature, with the majority being managed surgically.
View Article and Find Full Text PDFJ Am Podiatr Med Assoc
September 2025
§Aybars Kıvrak Orthopedics Clinic, Adana, Turkey.
Background: Pilon fractures refer to distal tibial fractures that may involve extra-articular, partial articular, or complete intra-articular components, most commonly caused by high-energy trauma. The choice between early (<72 hours) and delayed (>7 days) surgical fixation significantly impacts clinical outcomes. This study aimed to compare the effects of early vs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712.
Many soft, tough materials have emerged in recent years, paving the way for advances in wearable electronics, soft robotics, and flexible displays. However, understanding the interfacial fracture behavior of these materials remains a significant challenge, owing to the difficulty of quantifying the respective contributions from viscoelasticity and damage to energy dissipation ahead of cracks. This work aims to address this challenge by labeling a series of polymer networks with fluorogenic mechanophores, subjecting them to T-peel tests at various rates and temperatures, and quantifying their force-induced damage using a confocal microscope.
View Article and Find Full Text PDFJMIR Med Inform
September 2025
Department of Radiology, Air Force Medical Center, Air Force Medical University, Fucheng Road 30, Haidian District, Beijing, CN.
Background: Lateral malleolar avulsion fracture (LMAF) and subfibular ossicle (SFO) are distinct entities that both present as small bone fragments near the lateral malleolus on imaging, yet require different treatment strategies. Clinical and radiological differentiation is challenging, which can impede timely and precise management. On imaging, magnetic resonance imaging (MRI) is the diagnostic gold standard for differentiating LMAF from SFO, whereas radiological differentiation on computed tomography (CT) alone is challenging in routine practice.
View Article and Find Full Text PDFEur J Trauma Emerg Surg
September 2025
Department of Surgery, Division of Trauma Surgery, University Medical Center Groningen, Groningen, The Netherlands.