98%
921
2 minutes
20
It is not clear whether different radiation methods have different effects on enamel. The purpose of this study was to compare the effects of single and fractionated radiation on enamel and caries susceptibility and to provide an experimental basis for further study of radiation‑related caries. Thirty-six caries-free human third molars were collected and randomly divided into three groups (n = 12). Group1 (control group) was not exposed to radiation. Group 2 received single radiation with a cumulative dose of 70 Gy. Group 3 underwent fractionated radiation, receiving 2 Gy/day for 5 days followed by a 2-day rest period, for a total of 7 weeks with a cumulative dose of 70 Gy. Changes in microhardness, roughness, surface morphology, bacterial adhesion and ability of acid resistance of each group were tested. Scanning electron microscope revealed that the enamel surface in both radiation groups exhibited unevenness and cracks. Compared with the control group, microhardness and acid resistance of enamel decreased, while roughness and bacterial adhesion increased in both the single radiation and fractionated radiation groups. Compared with the single radiation group, the enamel surface microhardness and acid resistance decreased in the fractionated radiation group, while roughness and bacterial adhesion increased. Both single radiation and fractionated radiation resulting in changes in the physical and biological properties of enamel, with these changes being more pronounced in the fractionated radiation group. Therefore, fractionated radiation is recommended as a more suitable method for constructing a radiation‑related caries model in vitro.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364863 | PMC |
http://dx.doi.org/10.1038/s41598-024-71277-7 | DOI Listing |
Front Immunol
September 2025
Department of Radiation Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.
We focused on a paper titled "Radiation with immunotherapy may be a double-edged sword-how can we learn from recent negative clinical trials?", which was published in recently. Herein, we initially provided three complementary viewpoints from biological perspectives involved in the dynamic alterations of the tumor microenvironment, which may contribute to a more comprehensive understanding of the superiority of stereotactic body radiation therapy (SBRT).
View Article and Find Full Text PDFAdv Radiat Oncol
October 2025
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology and Radiotherapy, Augustenburger Platz 1, 13353 Berlin, Germany.
Purpose: To evaluate the impact of an optimized online adaptive radiation therapy workflow on physician involvement.
Methods And Materials: Data from a prospective phase 2 trial involving 34 prostate cancer patients treated with cone beam computed tomography (CBCT)-based online adaptive radiation therapy (62 Gy in 20 fractions) were analyzed. Manual interventions were required for 2 steps in the workflow: radiation therapy technologist review and adjustment of automatically segmented organs, guiding target segmentation, so-called "influencer," while physicians reviewed and refined the targets.
Cureus
August 2025
Division of Radiation Oncology and Developmental Radiotherapeutics, BC Cancer - Vancouver, Vancouver, CAN.
Introduction In select tumor sites, symptom palliation and local control can be improved through delivering higher biological equivalent doses (BED) of radiotherapy. However, not all patients are suitable candidates for stereotactic body radiation therapy (SBRT). The 30 Grays in five fractions (30/5) regimen is a conformal, hypofractionated regimen that offers a higher BED compared to conventional palliative radiotherapy.
View Article and Find Full Text PDFMed Phys
September 2025
Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.
Background: Radiotherapy workflows conventionally deliver one treatment plan multiple times throughout the treatment course. Non-coplanar techniques with beam angle optimization or dosimetrically optimized pathfinding (DOP) exploit additional degrees of freedom to improve spatial conformality of the dose distribution compared to widely used techniques like volumetric-modulated arc therapy (VMAT). The temporal dimension of dose delivery can be exploited using multiple plans (sub-plans) within one treatment course.
View Article and Find Full Text PDFAsia Pac J Clin Oncol
September 2025
Faculty of Medicine, Department of Radiation Oncology, Dokuz Eylul University, Izmir, Türkiye.
Purpose: We aimed to analyze our radiotherapy protocol by evaluating its effect on recurrence patterns and survival outcomes.
Methods: We assessed 69 patients diagnosed with IDH-wild-type glioblastoma who underwent chemoradiotherapy at our institution from January 2014 to January 2021. A high-risk clinical target volume (CTV) was created with a 1 cm margin in all directions from the GTV, while a low-risk clinical target volume (CTV) was established with a 2 cm margin.