98%
921
2 minutes
20
In this study, spherical silica with pore size varied from 30 to 200 Å was synthesized by pseudomorphic transformation at atmospheric pressure. 40-80 Å silica particles with a narrow pore distribution were obtained by using quaternary amine cationic surfactants and different kinds of swelling agents, including polypropylene glycol, 1,3,5-trimethylbenzene, alkanes, and alkanols. Alkyl imidazolium ionic liquid surfactants were used to synthesize large pore size distribution silica spheres with pore sizes in the range of 110-200 Å. All these silica particles can be synthesized under mild conditions within 12 h, which provides a facile synthesis method for the preparation of a chromatographic matrix with tunable pore size. The method is reproducible and the relative standard deviation of silica sphere pore structure parameters in scaled-up preparations is less than 6%. The pore size on the fraction of low-molecular-weight heparin (LMWH) was investigated in size exclusion chromatography. Matrixes with different pore size distributions have various size exclusion regions. By using UPS-60-Diol columns in a twin-column recirculation separation process, LMWH with >85% heparin with molecular weight within the range of 3000-8000 Da were separated in five-column volumes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.202400367 | DOI Listing |
PLoS One
September 2025
Datong Hongtai Mine Engineering Construction Co., Ltd. of Jinneng Holding Coal Industry Group, Datong, China.
To reveal the microscopic damage evolution law of rocks under the effect of unloading disturbances with different amplitudes, electron microscope scanning, nuclear magnetic resonance (NMR), and triaxial compression tests were carried out. The evolution patterns of surface and internal pore types and mechanical properties of rock specimens after unloading perturbation were analyzed. In this paper, a classification of the ratio of dmax/dmin (dmax and dmin refer to the maximum and minimum pore size of each pore, respectively) is proposed to examine the pore and crack evolution extension development on the surface of the specimen.
View Article and Find Full Text PDFNanoscale Adv
July 2025
University of Kentucky, Department of Chemical and Materials Engineering 177 F.P. Anderson Tower Lexington Kentucky 40506-0046 USA
The crystallization behavior of ionic liquids (ILs) 1-butyl-3-methylimidazolium [BMIM] hexafluorophosphate [PF] and chloride [Cl] is investigated upon confinement in 2.3 or 8.2 nm diameter silica nanopore arrays, along with the effects of covalently modifying the pore walls with 1-(3-trimethoxysilylpropyl)3-methylimidazolium [TMS-MIM] groups.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
September 2025
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
The defining property of eukaryotic cells is the storage of heritable genetic material in a nuclear compartment. For eukaryotic cells to carry out the myriad biochemical processes necessary for their function, macromolecules must be efficiently exchanged between the nucleus and cytoplasm. The nuclear pore complex (NPC) - which is a massive assembly of ~35 different proteins present in multiple copies totalling ~1,000 protein subunits and architecturally conserved across eukaryotes - establishes a size-selective channel for regulated bidirectional transport of folded macromolecules and macromolecular assemblies across the nuclear envelope.
View Article and Find Full Text PDFFood Res Int
November 2025
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS) / Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; College of Food Science, Shenyang Agricultural University, Shenyang 110866, China. Electronic a
While restructuring agricultural products enhances heat and mass transfer during freeze-drying, the underlying mechanisms remain poorly understood. This study employed a multiscale approach, combining freezing dynamics, sublimation drying kinetics, X-ray tomography, gas permeability assessments, thermodynamic parameters analysis, and mathematical modeling to systematically investigate the differences in transfer properties between natural and restructured peaches across the freezing and sublimation drying processes. Key results demonstrated that restructuring decreased the freezing time by 21.
View Article and Find Full Text PDFJ Occup Environ Hyg
September 2025
Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories, US Food and Drug Administration (FDA), Oak Ridge, Tennessee.
This work assesses the current characterization framework of single-use personal protective equipment (PPE) per recognized consensus standards and presents a novel quantitative approach to refining characterization of barrier materials and predicting PPE performance. Scanning electron microscopy (SEM) and image analysis software (Diameter J) were used to examine the microscopic fiber and pore structure of filter layers of surgical N95 filtering facepiece respirators, before and after exposure to chemicals used in decontamination modalities (vaporized hydrogen peroxide or ozone). The effect of porosity on penetration was assessed by bacterial filtration efficiency (BFE) testing.
View Article and Find Full Text PDF