98%
921
2 minutes
20
Glass waveguides are the fundamental component of advanced photonic circuits and play a pivotal role in diverse applications, including quantum information processing, light generation, imaging, data storage, and sensing platforms. Up to date, the fabrication of glass waveguides relies mainly on demanding chemical processes or on the employment of expensive ultrafast laser equipment. In this work, we demonstrate an advanced, simple, low-temperature, postmelting encapsulation procedure for the development of glass waveguides. Specifically, silver iodide phosphate glass microwires (MWs) are drawn from splat-quenched glasses. These MWs are then incorporated in a controlled manner within transparent silver phosphate glass matrices. The judicious selection of glass compositions ensures that the refractive index of the host phosphate glass is lower than that of the embedded MWs. This facilitates the propagation of light inside the encapsulated higher refractive index MWs, leading to the facile development of waveguides. Importantly, we substantially enhance the light transmission within the MWs by leveraging the plasmon resonance effects due to the presence of silver nanoparticles spontaneously generated owing to the silver iodide phosphate glass composition. Employing this innovative approach, we have successfully engineered waveguide devices incorporating either one or two MWs. Remarkably, the dual MW devices are capable of transmitting light of different colors and in multipath direction, rendering the developed waveguides outstanding candidates for extending the functionalities of diverse photonic and optoelectronic circuits, as well as in intelligent signaling applications in smart glass technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348410 | PMC |
http://dx.doi.org/10.1021/acsaom.4c00237 | DOI Listing |
Tissue Eng Part B Rev
September 2025
The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
The reconstruction of critical-sized bone defects remains a challenging clinical problem. At present, the implantation of autogenous and allogeneic grafts is the main clinical treatment strategy but faces some drawbacks, such as inadequate source, donor site-related complications, and immune rejection, driving researchers to develop artificial bone substitutes based on distinct materials and fabrication technologies. Among the bone substitutes, bioceramic-based substitutes exhibit a remarkable biocompatibility, which can also be designed to degrade concomitantly with the formation of new bone.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Division of Advanced Ceramics, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
Phosphate and phosphate invert glasses contain various elements, with a wide range of compositions. Recently, our group reported orthosilicophosphate glasses (SPGs) and the glass network structure composed of orthophosphates and orthosilicates crosslinked by cations. ZnO is an intermediate oxide that improves the chemical durability of glass.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
Near-zero wear on engineering steel surfaces is a promising solution to extend the service life of mechanical equipment. However, most existing strategies offer only limited low wear under particular conditions and friction pairs. To address this, we design a polymer-based proton ionic liquid (PPILs) lubricant, leveraging the proton exchange between polyethylenimine, which is rich in active nitrogen groups, and bis(2-ethylhexyl) phosphate.
View Article and Find Full Text PDFLangmuir
September 2025
School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, P.R. China.
Amidst global sustainability imperatives, this study pioneers a solid-state regeneration strategy that transforms spent LiCoO (LCO) cathodes into high-performance materials via amorphous lithium iron phosphate glass (LFPg)-driven structural reconfiguration. Unlike conventional recycling that decomposes cathodes, our approach leverages LFPg's defect-rich framework, high ionic conductivity, and dynamic interfacial activity to directly reconstruct degraded LCO crystals. The LFPg acts as a multifunctional repair agent: creating Li diffusion channels through disorder engineering, eliminating oxygen vacancies via atomic oxygen transfer, scavenging impurities (e.
View Article and Find Full Text PDFMicroorganisms
July 2025
Department of Mechanical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Chuo-ku, Hamamatsu 432-8561, Japan.
Biofilms cause a variety of problems, such as food spoilage, food poisoning, infection, tooth decay, periodontal disease, and metal corrosion, so knowledge on biofilm prevention and removal is important. A detailed observation of the three-dimensional structure of biofilms on the nanoscale is expected to provide insight into this. In this study, we report on the successful in situ nanoscale observations of a marine bacterial biofilm on glass in phosphate buffer solution (PBS) using both scanning ion conductance microscopy (SICM) and confocal laser scanning microscopy (CLSM) over the same area.
View Article and Find Full Text PDF