98%
921
2 minutes
20
Aquaculture is expected to play a vital role in solving the challenge of sustainably providing the growing world population with healthy and nutritious food. Pathogen outbreaks are a major risk for the sector, so early detection and a timely response are crucial. This can be enabled by monitoring the pathogen levels in aquaculture facilities. This paper describes a photonic biosensing platform based on silicon nitride waveguide technology with integrated active components, which could be used for such applications. Compared to the state of the art, the current system presents improvements in terms of miniaturization of the Photonic Integrated Circuit (PIC) and the development of wafer-level processes for hybrid integration of active components and for material-selective chemical and biological surface modification. Furthermore, scalable processes for integrating the PIC in a microfluidic cartridge were developed, as well as a prototype desktop readout instrument. Three bacterial aquaculture pathogens (, , and ) were selected for assay development. DNA biomarkers were identified, corresponding primer-probe sets designed, and qPCR assays developed. The biomarker for was also detected using the hybrid PIC platform. This is the first successful demonstration of biosensing on the hybrid PIC platform.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358904 | PMC |
http://dx.doi.org/10.3390/s24165241 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qing
Silk fibroin (SF)-based flexible electronic/photonic materials have gained great attention in wearable devices and soft sensors. However, it remains challenging to understand the molecular interaction mechanisms and subsequently fabricate SF-based flexible materials that exhibit fluorescence, humidity sensitivity, and conductivity properties. In this study, by incorporating lanthanide europium ion (Eu), the design and fabrication of a flexible, fluorescent, and conductive SF membrane was proposed.
View Article and Find Full Text PDFSci Bull (Beijing)
August 2025
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China. Electronic address:
Determining the number of photons in an incident light pulse at room temperature is the ultimate goal of photodetection. Herein, we report a plasmon-strain-coupled tens of photon level phototransistor by integrating monolayer MoS on top of Au nanowire (NW). Within this structure, Au NW can greatly enhance incident light intensity around MoS, and the large tensile strain can reduce the contact energy barrier between MoS and Au NW, so as to achieve efficient injection of plasmonic hot electrons into MoS.
View Article and Find Full Text PDFNanophotonics
August 2025
Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, 08028 Barcelona, Spain.
One-dimensional photonic crystal (1D-PhC) pillar cavities allow transducing mechanical pillar vibrations to the optical domain, thereby relaxing the requirements typically associated with mechanical motion detection. In this study, we integrate these geometries into a silicon-on-insulator photonics platform and explore their optical and mechanical properties. The 1D-PhC structures consist of a linear array of high aspect ratio nanopillars with nanometer-sized diameters, designed to enhance the interaction between transverse-magnetic (TM) polarized optical fields and mechanical vibrations and to minimize optical leaking to the substrate.
View Article and Find Full Text PDFAnal Bioanal Chem
August 2025
Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
The unique optical interaction of species such as nanomaterials, proteins, viruses, antibodies, microRNA, and exosomes with the one-dimensional grating-based photonic crystals (PCs) has been leveraged in their detection using photonic crystal absorption microscopy (PRAM). While the principle and fundamental mechanism of such interfacial interactions are well delineated using wavelength and intensity modulations associated with the guided-mode resonance (GMR) of the PC, the effect of nano-assemblies in place of nanoparticles (NPs) has not been reported previously. In this work, the fundamental limitations observed with pristine NPs are overcome through the use of tunable AuNP assemblies synthesized via adiabatic cooling technology, where tunable nano-assemblies are obtained by subjecting the respective NPs to - 196 °C.
View Article and Find Full Text PDFMicromachines (Basel)
August 2025
Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong BE1410, Brunei.
Nanophotonics, the study of light-matter interactions at the nanometer scale, has emerged as a transformative field that bridges photonics and nanotechnology. Using engineered nanomaterials-including plasmonic metals, high-index dielectrics, two-dimensional (2D) materials, and hybrid systems-nanophotonics enables light manipulation beyond the diffraction limit, unlocking novel applications in sensing, imaging, and quantum technologies. This review provides a comprehensive overview of recent advances (post-2020) in nanophotonic materials, fabrication methods, and their cutting-edge applications.
View Article and Find Full Text PDF