98%
921
2 minutes
20
Dissolving microneedles are extensively applied in drug delivery systems to enhance penetration into the skin. In this study, dissolving microneedles fabricated from polyvinylpyrrolidone K90 (PVP-K90) and hydroxypropylmethyl cellulose (HPMC) E50 in different ratios were characterized. The selected formulations incorporated L. extract complex and its characteristics, transfollicular penetration, and safety were observed. The microneedles, fabricated from PVP K90: HPMC E50 in a ratio of 25:5 (P25H5) and 20:10 (P20H10), revealed excellent morphological structure, proper mechanical strength, and excellent skin insertion. P25H5 microneedles exhibited faster dissolution than P20H10 microneedles. Microneedles containing L. extract complex showed excellent morphological structure via scanning electron microscopy but decreased mechanical strength. P25H5-O, which exhibited an effective ability to enter skin, was selected for further investigation. This microneedle formulation had a high percentage of drug-loading content, enhanced skin penetration via the transfollicular route, and was safe for keratinocytes. As a result, the dissolving microneedle containing L. extract complex can be used to enhance transfollicular delivery through the skin with safety.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359393 | PMC |
http://dx.doi.org/10.3390/polym16162377 | DOI Listing |
Mol Biol Rep
September 2025
Phytoveda Pvt. Ltd, Mumbai, 400022, India.
Background: The dysregulation of long-chain noncoding RNAs (lncRNAs) causes several complex human diseases including neurodegenerative disorders across the globe.
Methods And Results: This study aimed to investigate lncRNA expression profiles of Withania somnifera (WS)-treated human neuroblastoma SK-N-SH cells at different timepoints (3 & 9 h) and concentrations (50 & 100 µg/mL) using RNA sequencing. Differential gene expression analysis showed a total of 4772 differentially expressed lncRNAs, out of which 3971 were upregulated and 801 were downregulated compared to controls.
Eur J Orthop Surg Traumatol
September 2025
All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, India.
Background: Pelvic and acetabular fractures, often resulting from high-impact trauma, pose significant challenges due to extensive blood loss and complex surgical procedures. Tranexamic acid (TXA), widely used in elective orthopedic surgeries, offers a potential strategy for managing blood loss. However, its efficacy and safety in pelvic-acetabular trauma surgeries have shown inconsistent results in prior studies.
View Article and Find Full Text PDFJ Virol
September 2025
Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Unlabelled: There is a need for the development of broad-spectrum antiviral compounds that can act as first-line therapeutic countermeasures to emerging viral infections. Host-directed approaches present a promising avenue of development and carry the benefit of mitigating risks of viral escape mutants. We have previously found the SKI (super killer) complex to be a broad-spectrum, host-target with our lead compound ("UMB18") showing activity against influenza A virus, coronaviruses, and filoviruses.
View Article and Find Full Text PDFElife
September 2025
Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India.
The UFD-1 (ubiquitin fusion degradation 1)-NPL-4 (nuclear protein localization homolog 4) heterodimer is involved in extracting ubiquitinated proteins from several plasma membrane locations, including the endoplasmic reticulum. This heterodimer complex helps in the degradation of ubiquitinated proteins via the proteasome with the help of the AAA+ATPase CDC-48. While the ubiquitin-proteasome system is known to have important roles in maintaining innate immune responses, the role of the UFD-1-NPL-4 complex in regulating immunity remains elusive.
View Article and Find Full Text PDFAJR Am J Roentgenol
September 2025
Department of Radiology, Stanford University, Stanford, CA, USA.
The increasing complexity and volume of radiology reports present challenges for timely critical findings communication. To evaluate the performance of two out-of-the-box LLMs in detecting and classifying critical findings in radiology reports using various prompt strategies. The analysis included 252 radiology reports of varying modalities and anatomic regions extracted from the MIMIC-III database, divided into a prompt engineering tuning set of 50 reports, a holdout test set of 125 reports, and a pool of 77 remaining reports used as examples for few-shot prompting.
View Article and Find Full Text PDF