Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, we present the design, implementation, and successful use of digital droplet PCR (ddPCR) for the monitoring of chimeric antigen receptor T-cell (CAR-T) expansion in patients with B-cell malignancies treated with different CAR-T products at our clinical center. Initially, we designed a specific and highly sensitive ddPCR assay targeting the junction between the 4-1BB and CD3ζ domains of tisa-cel, normalized with , and validated it using blood samples from the first tisa-cel-treated patient in Switzerland. We further compared this assay with a published qPCR (quantitative real-time PCR) design. Both assays showed reliable quantification of CAR-T copies down to 20 copies/µg DNA. The reproducibility and precision were confirmed through extensive testing and inter-laboratory comparisons. With the introduction of other CAR-T products, we also developed a corresponding ddPCR assay targeting axi-cel and brexu-cel, demonstrating high specificity and sensitivity with a limit of detection of 20 copies/µg DNA. These assays are suitable for CAR-T copy number quantification across multiple sample types, including peripheral blood, bone marrow, and lymph node biopsy material, showing robust performance and indicating the presence of CAR-T cells not only in the blood but also in target tissues. Longitudinal monitoring of CAR-T cell kinetics in 141 patients treated with tisa-cel, axi-cel, or brexu-cel revealed significant expansion and long-term persistence. Peak expansion correlated with clinical outcomes and adverse effects, as is now well known. Additionally, we quantified the CAR-T mRNA expression, showing a high correlation with DNA copy numbers and confirming active transgene expression. Our results highlight the quality of ddPCR for CAR-T monitoring, providing a sensitive, precise, and reproducible method suitable for clinical applications. This approach can be adapted for future CAR-T products and will support the monitoring and the management of CAR-T cell therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11354041PMC
http://dx.doi.org/10.3390/ijms25168556DOI Listing

Publication Analysis

Top Keywords

car-t
12
car-t cell
12
car-t products
12
monitoring car-t
8
cell kinetics
8
clinical applications
8
ddpcr assay
8
assay targeting
8
copies/µg dna
8
axi-cel brexu-cel
8

Similar Publications

Adoptive cellular therapies in multiple myeloma.

Best Pract Res Clin Haematol

September 2025

Department of Personalized Medicine and Rare Diseases, Medfuture Institute for Biomedical Research - Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Cancer Center, Cluj Napoca, Romania. Electronic address:

Plasma cell myeloma (multiple myeloma) is a blood cancer characterized by the clonal proliferation of plasma cells in the bone marrow. Treatment strategies evolve year by year, new drugs getting Food and Drug Administration (FDA)-approved each year. Chimeric antigen receptor (CAR) therapies are an advanced form of immunotherapy that engineer T cells to recognize and destroy cancer cells.

View Article and Find Full Text PDF

Adoptive cellular therapies in non-Hodgkin lymphomas.

Best Pract Res Clin Haematol

September 2025

Department of Personalized Medicine and Rare Diseases, Medfuture Institute for Biomedical Research - Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Cancer Center, Cluj Napoca, Romania. Electronic address: c

Lymphomas are a group of malignant proliferations of B, T or NK-lymphoid cells at different stages of maturation. While they primarily occur in lymph nodes or lymphatic tissues, they can also involve bone marrow, blood, or other organs. Despite advances in treatment, many patients experience relapse, or develop refractory disease, prompting the development of new therapies.

View Article and Find Full Text PDF

In patients with relapsed/refractory (R/R) large B-cell lymphoma (LBCL) who are either refractory to first-line therapy or relapse within 12 months, chimeric antigen receptor (CAR) T-cell therapy is more effective than salvage chemotherapy followed by high-dose chemotherapy and autologous stem cell transplantation (ASCT) as second-line therapy. Adoption of CAR T-cell therapy into routine clinical practice involves a period of adaptation and refinement of clinical processes. We aimed to document the evolution of clinical processes for CAR T-cell therapy during 2022 and 2023, and compare healthcare resource utilization (HCRU) associated with CAR T-cell and ASCT processes in routine clinical practice.

View Article and Find Full Text PDF

The Clinical Utility of Real-Time Patient Reported Outcomes in Cell Therapy Recipients.

Transplant Cell Ther

September 2025

The Dartmouth Institute for Health Policy & Clinical Practice; Geisel School of Medicine at Dartmouth, Level 5, Williamson Building, One Medical Center Drive, Lebanon, NH, 03756.

Background: The use of patient-reported outcome measures (PROMs) can improve a patient's clinical course by decreasing the incidence and severity of both physical and emotional treatment-related toxicities, uncover unmet patient needs and assist in patients' shared decision-making.

Objectives: The objective of this study was to examine the feasibility and utility of using electronically captured "real time" agenda-setting questions and PROMs at the time of the patient's clinic visit.

Study Design: We designed a prospective observational study that employed a pre-visit questionnaire (PVQ) that included agenda-setting questions and the PROMIS-29 survey, with results incorporated into a clinical decision support dashboard embedded within the patients' electronic medical record (EMR).

View Article and Find Full Text PDF