Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gouty arthritis (GA) is an inflammatory disease caused by monosodium urate (MSU) crystals deposited in the joint tissues causing severe pain. The disease can recur frequently and tends to form tophus in the joints. Current therapeutic drugs for the acute phase of GA have many side effects and limitations, are unable to prevent recurrent GA attacks and tophus formation, and overall efficacy is unsatisfactory. Therefore, we need to advance research on the microscopic mechanism of GA and seek safer and more effective drugs through relevant targets to block the GA disease process. Current research shows that the pathogenesis of GA is closely related to NLRP3 inflammation, oxidative stress, MAPK, NET, autophagy, and Ferroptosis. However, after synthesizing and sorting out the above mechanisms, it is found that the presence of ROS is throughout almost the entire spectrum of micro-mechanisms of the gout disease process, which combines multiple immune responses to form a large network diagram of complex and tight connections involved in the GA disease process. Current studies have shown that inflammation, oxidative stress, cell necrosis, and pathological signs of GA in GA joint tissues can be effectively suppressed by modulating ROS network-related targets. In this article, on the one hand, we investigated the generative mechanism of ROS network generation and its association with GA. On the other hand, we explored the potential of related targets for the treatment of gout and the prevention of tophus formation, which can provide effective reference ideas for the development of highly effective drugs for the treatment of GA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11353092PMC
http://dx.doi.org/10.3390/biom14080978DOI Listing

Publication Analysis

Top Keywords

disease process
12
immune responses
8
gouty arthritis
8
joint tissues
8
tophus formation
8
effective drugs
8
process current
8
inflammation oxidative
8
oxidative stress
8
disease
5

Similar Publications

Dissecting the Molecular Determinants of α-synuclein Phase Separation and Condensate Aging: The Pivotal Role of β-Sheet-Rich Motifs.

Adv Sci (Weinh)

September 2025

Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science (Ministry of Education), Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433, China.

Emerging evidence indicates that liquid-liquid phase separation of α-synuclein occurs during the nucleation step of its aggregation, a pivotal step in the onset of Parkinson's disease. Elucidating the molecular determinants governing this process is essential for understanding the pathological mechanisms of diseases and developing therapeutic strategies that target early-stage aggregation. While previous studies have identified residues critical for α-synuclein amyloid formation, the key residues and molecular drivers of its phase separation remain largely unexplored.

View Article and Find Full Text PDF

Functional PET (fPET) identifies stimulation-specific changes of physiological processes, individual molecular connectivity and group-level molecular covariance. Since there is currently no consistent analysis approach available for these techniques, we present a toolbox for unified fPET assessment. The toolbox supports analysis of data obtained with a variety of radiotracers, scanners, experimental protocols, cognitive tasks and species.

View Article and Find Full Text PDF

Macrophage cannibalism: efferocytosis in atherosclerosis.

Curr Opin Lipidol

August 2025

Cardiometabolic Immunity Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute (BDI) and Victorian Heart Institute (VHI), Monash University, Melbourne, Victoria, Australia.

Purpose Of Review: This review explores the evolving understanding of efferocytosis - the clearance of dead or dying cells by phagocytes - in the context of atherosclerosis. It highlights recent discovers in cell death modalities, impaired clearance mechanisms and emerging therapeutic strategies aimed at restoring efferocytosis to stabilize plaques and resolve inflammation.

Recent Findings: Recent studies have expanded the scope of efferocytosis beyond apoptotic cells to include other pro-inflammatory cell death modes, including pyroptosis, necroptosis and ferroptosis, revealing context-dependent clearance efficiency and immunological outcomes.

View Article and Find Full Text PDF

Background: Prostate cancer is one of the most common malignancies in males worldwide. Serum prostate-specific antigen is a frequently employed biomarker in the diagnosis and risk stratification of prostate cancer; however, it is known for its low predictive accuracy for disease progression. New prognostic biomarkers are needed to distinguish aggressive prostate cancer from low-risk disease.

View Article and Find Full Text PDF

Migrasomes in Health and Disease: Insights into Mechanisms, Pathogenesis, and Therapeutic Opportunities.

Cell Physiol Biochem

September 2025

Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland, E-Mail:

Migrasomes are newly discovered, migration-dependent organelles that mediate the release of cellular contents into the extracellular environment through a process known as migracytosis. Since their identification in 2014, growing evidence has highlighted their critical roles in intercellular communication, organ development, mitochondrial quality control, and disease pathogenesis. Migrasome biogenesis is a complex, multi-step process tightly regulated by lipid composition, tetraspanin-enriched microdomains, and molecular pathways involving sphingomyelin synthase 2, Rab35, and integrins.

View Article and Find Full Text PDF