A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Machine learning and computer vision technology to analyze and discriminate soil samples. | LitMetric

Machine learning and computer vision technology to analyze and discriminate soil samples.

Sci Rep

Department of Agricultural Machinery and Technologies Engineering, Faculty of Agriculture, Ankara University, Ankara, Turkey.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soil texture is one of the most important elements to consider before planting and tillage. These features affect the product selection and regulate its water permeability. Discrimination of soils by determining soil texture features requires an intense workload and is time-consuming. Therefore, having a powerful tool and knowledge for texture-based soil discrimination could enable rapid and accurate discrimination of soils. This study focuses on presenting new models for 6 different soil sample groups (Soil_1 to Soil_6) based on 12 different machine learning algorithms that can be utilized for various problems. As a result, overall accuracy values were determined as greater than 99.2% (Trilayered Neural Network). The greatest accuracy value was found in Bayes Net (99.83%) and followed by Subspace Discriminant (99.80%). In the Bayes Net algorithm, MCC (Matthews Correlation Coefficient) and F-measure values were obtained as 0.994 and 0.995 for Soil_4 and Soil_6 sample groups while these values were 1.000 for other soil groups. Soil types can visually vary based on their texture, mineral composition, and moisture levels. The variability of this can be influenced by fertilization, precipitation levels, and soil cultivation. It is important to capture the images in soil conditions that are more stable. In conclusion, the present study has proven the feasibility of rapid, non-destructive, and accurate discrimination of soils by image processing-based machine learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358420PMC
http://dx.doi.org/10.1038/s41598-024-69464-7DOI Listing

Publication Analysis

Top Keywords

machine learning
12
discrimination soils
12
soil
9
soil texture
8
accurate discrimination
8
sample groups
8
bayes net
8
learning computer
4
computer vision
4
vision technology
4

Similar Publications