Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Treatment-resistant depression affects about 30% of individuals with major depressive disorder. Deep brain stimulation is an investigational intervention for treatment-resistant depression with varied results. We undertook this meta-analysis to synthesize outcome data across trial designs, anatomical targets, and institutions to better establish efficacy and side-effect profiles.

Methods: We conducted a systematic PubMed review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Seven randomized controlled trials (n = 198) and 8 open-label trials (n = 77) were included spanning 2009 to 2020. Outcome measures included Hamilton Depression Rating Scale or Montgomery-Åsberg Depression Rating Scale scores, as well as response and remission rates over time. Outcomes were tracked at the last follow-up and quantified as a time course using model-based network meta-analysis. Linear mixed models were fit to individual patient data to identify covariates.

Results: Deep brain stimulation achieved 47% improvement in long-term depression scale scores, with an estimated time to reach 50% improvement of around 23 months. There were no significant subgroup effects of stimulation target, time of last follow-up, sex, age of disease onset, or duration of disease, but open-label trials showed significantly greater treatment effects than randomized controlled trials. Long-term (12-60 month) response and remission rates were 48% and 35%, respectively. The time course of improvement with active stimulation could not be adequately distinguished from that with sham stimulation, when available.

Conclusions: Deep brain stimulation produces significant chronic improvement in symptoms of treatment-resistant depression. However, the limited sham-controlled data do not demonstrate significant improvement over placebo. Future advancements in stimulation optimization and careful blinding and placebo schemes are important next steps for this therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpsc.2024.08.013DOI Listing

Publication Analysis

Top Keywords

deep brain
16
brain stimulation
16
treatment-resistant depression
16
stimulation
8
randomized controlled
8
controlled trials
8
trials n =
8
open-label trials
8
depression rating
8
rating scale
8

Similar Publications

A spatial-frequency hybrid restoration network for JPEG compressed image deblurring.

Neural Netw

September 2025

organization=Chongqing Key Laboratory of Computer Network and Communication Technology, School of Computer Science and Technology (National Exemplary Software School), Chongqing University of Posts and Telecommunications, city=Chongqing, postcode=400065, country=China. Electronic address: tianh519@1

Image deblurring and compression-artifact removal are both ill-posed inverse problems in low-level vision tasks. So far, although numerous image deblurring and compression-artifact removal methods have been proposed respectively, the research for explicit handling blur and compression-artifact coexisting degradation image (BCDI) is rare. In the BCDI, image contents will be damaged more seriously, especially for edges and texture details.

View Article and Find Full Text PDF

Background And Objectives: Neuroimaging findings in immune effector cell-associated neurotoxicity syndrome (ICANS) have not been systematically described. We created the chimeric antigen receptor (CAR) T-cell Neurotoxicity Imaging Virtual Archive Library (CARNIVAL), a centralized imaging database for children and young adults receiving CAR T-cell therapy. Objectives of this study were to (1) characterize neuroimaging findings associated with ICANS and (2) determine whether specific ICANS-related neuroimaging findings are associated with individual neurologic symptoms.

View Article and Find Full Text PDF

The hypothalamus is an ancient brain region that regulates diverse aspects of physiology and behavior, including sleep and wakefulness, appetite, energy homeostasis, anxiety, depression, and social interaction. Specific neuronal populations in the hypothalamus exert their effects via the release of neurotransmitters and neuropeptides. Whole-cell patch-clamp recording is an indispensable approach for studying the roles of these factors in synaptic transmission and brain function.

View Article and Find Full Text PDF

Objective: Transcranial ultrasound (US) stimulation (TUS) has emerged as a promising technique for minimally invasive, localized, deep brain stimulation. However, indirect auditory effects during neuromodulation require careful consideration, particularly in experiments with rodents. One method to prevent auditory responses involves applying tapered envelopes to US bursts.

View Article and Find Full Text PDF

Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .

View Article and Find Full Text PDF