Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Skin, the largest organ in the human body, is a crucial protective barrier that plays essential roles in thermoregulation, sensation, and immune defence. This complex organ undergoes intricate processes of development. Skin development initiates during the embryonic stage, orchestrated by molecular cues that control epidermal specification, commitment, stratification, terminal differentiation, and appendage growth. Key signalling pathways are integral in coordinating the development of the epidermis, hair follicles, and sweat glands. The complex interplay among these pathways is vital for the appropriate formation and functionality of the skin. Disruptions in multiple molecular pathways can give rise to a spectrum of skin diseases, from congenital skin disorders to cancers. By delving into the molecular mechanisms implicated in developmental processes, as well as in the pathogenesis of diseases, this narrative review aims to present a comprehensive understanding of these aspects. Such knowledge paves the way for developing innovative targeted therapies and personalised treatment approaches for various skin conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11353016PMC
http://dx.doi.org/10.3390/cimb46080487DOI Listing

Publication Analysis

Top Keywords

skin development
8
skin
7
development disease
4
molecular
4
disease molecular
4
molecular perspective
4
perspective skin
4
skin largest
4
largest organ
4
organ human
4

Similar Publications

Langerhans cell sarcoma (LCS) is an aggressive malignant neoplasm with a Langerhans cell immunophenotype and high-grade cytological features. Occasionally, it can coexist with other hematopoietic neoplasms with proven clonal relationship. Most of these neoplasms were found to be of lymphoid origin.

View Article and Find Full Text PDF

Objectives: Juvenile dermatomyositis (JDM) is a heterogeneous autoimmune condition needing targeted treatment approaches and improved understanding of molecular mechanisms driving clinical phenotypes. We utilised exploratory proteomics from a longitudinal North American cohort of patients with new-onset JDM to identify biological pathways at disease onset and follow-up, tissue-specific disease activity, and myositis-specific autoantibody (MSA) status.

Methods: We measured 3072 plasma proteins (Olink panel) in 56 patients with JDM within 12 weeks of starting treatment (from the Childhood Arthritis and Rheumatology Research Alliance Registry and 3 additional sites) and 8 paediatric controls.

View Article and Find Full Text PDF

Skin aging serves as a critical indicator of systemic health decline. Despite Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) being a key therapeutic target, mechanistic understanding remains incomplete and potent, safe activators are lacking, hindering clinical progress. This study proposes the "Barrier-Skin-Systemic Aging Axis," demonstrating that epidermal barrier disruption accelerates aging via PPARγ suppression.

View Article and Find Full Text PDF

A review of biomimetic hydrogel wound dressings: Design inspiration, construction strategies, multifunctionality and applications.

Int J Biol Macromol

September 2025

Marine College, Shandong University, Weihai, 264209, China; Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 265599, China. Electronic address:

The treatment of chronic hard-to-heal wounds has become a major medical and public health problem worldwide. The search for novel and efficient wound healing dressings is crucial because of the complex mechanisms of wound genesis and of the inability to spontaneously repair. Many inherent properties of organisms in nature and their intrinsic molecular mechanisms have inspired researchers to design biomimetic hydrogel wound dressings to treat chronic hard-to-heal wounds.

View Article and Find Full Text PDF

Effect of the combination of ion-pairs strategies and permeation enhancers on iguratimod transdermal patch against rheumatoid arthritis.

Eur J Pharm Biopharm

September 2025

Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China. Electronic address:

Iguratimod (IGU) is a novel anti-rheumatic drug, which has anti-inflammatory effects, inhibits bone destruction, and promotes bone formation. However, the gastrointestinal side-effects caused by oral tablets of IGU pose a challenge. This study aimed to develop an IGU transdermal patch for Rheumatoid Arthritis (RA) through ion-pair and chemical penetrant strategies to improve the therapeutic efficacy.

View Article and Find Full Text PDF