98%
921
2 minutes
20
Cationic gemini surfactants have emerged as potential gene delivery agents as they can co-assemble with DNA due to a strong electrostatic association. Commonly, DNA complexation is enhanced by the inclusion of a helper lipid (HL), which also plays a key role in transfection efficiency. The formation of lipoplexes, used as non-viral vectors for transfection, through electrostatic and hydrophobic interactions is affected by various physicochemical parameters, such as cationic surfactant:HL molar ratio, (+/-) charge ratio, and the morphological structure of the lipoplexes. Herein, we investigated the DNA complexation ability of mixtures of serine-based gemini surfactants, (nSer)N5, and monoolein (MO) as a helper lipid. The micelle-forming serine surfactants contain long lipophilic chains (12 to 18 C atoms) and a five CH spacer, both linked to the nitrogen atoms of the serine residues by amine linkages. The (nSer)N5:MO aggregates are non-cytotoxic up to 35-90 µM, depending on surfactant and surfactant/MO mixing ratio, and in general, higher MO content and longer surfactant chain length tend to promote higher cell viability. All systems efficaciously complex DNA, but the (18Ser)N5:MO one clearly stands as the best-performing one. Incorporating MO into the serine surfactant system affects the morphology and size distribution of the formed mixed aggregates. In the low concentration regime, gemini-MO systems aggregate in the form of vesicles, while at high concentrations the formation of a lamellar liquid crystalline phase is observed. This suggests that lipoplexes might share a similar bilayer-based structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355309 | PMC |
http://dx.doi.org/10.3390/jfb15080224 | DOI Listing |
J Chem Inf Model
September 2025
Key Laboratory of Micro-nano Sensing and IoT of Wenzhou, Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China.
Transcription factors (TFs) are essential proteins that regulate gene expression by specifically binding to transcription factor binding sites (TFBSs) within DNA sequences. Their ability to precisely control the transcription process is crucial for understanding gene regulatory networks, uncovering disease mechanisms, and designing synthetic biology tools. Accurate TFBS prediction, therefore, holds significant importance in advancing these areas of research.
View Article and Find Full Text PDFAdv Drug Deliv Rev
September 2025
State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China; Shanghai Key Laboratory of Cancer System Regulation and Clinical Translation, Jiading District Central Hospital, Renji Hospital J
DNA exhibits remarkable versatility, which is attributed to its inherent molecular recognition capabilities, programmable sequences, and excellent biocompatibility. Among its various topological forms, branched DNA (bDNA), including Y-shaped DNA (Y-DNA), X-shaped DNA (X-DNA), etc., stands out as a fundamental building block for fabricating functional DNA-based materials and has demonstrated great promise across diverse applications in recent years.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau. Electronic address:
Protein-nucleic acid interactions (PNI) play crucial roles in various life processes, including gene expression regulation, DNA replication, repair, recombination, and RNA processing and translation. However, accurately predicting these interactions remains challenging due to their complexity. This paper proposes a deep learning-based multi-task learning framework for predicting protein-nucleic acid interactions.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China. Electronic address:
Aptamers are single-stranded DNA or RNA oligonucleotides that can bind to specific target molecules with high affinity and specificity. Fluorescence DNA aptamer-based biosensors (aptasensors) have emerged as powerful analytical tools for detecting diverse targets, ranging from food contaminants to disease biomarkers, owing to their exceptional specificity, high sensitivity, and cost-effectiveness. This review systematically summarizes recent advances in the design strategies of fluorescence aptasensors, focusing on three key approaches: (1) fluorescence resonance energy transfer-based signal amplification, (2) nanomaterial-enhanced probes, and (3) multi-channel platforms for simultaneous detection.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
Materials Artificial Intelligence Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. Electronic address:
Screening for high-risk human papillomavirus (hrHPV) infection is essential for cervical cancer prevention. However, developing a simple, portable, and low-cost hrHPV genotyping method remains challenging, particularly in resource-limited settings. Herein, we present an innovative amplification-free, point-of-care hrHPV genotyping platform integrating CRISPR/Cas12a with alkaline phosphatase (ALP)-mediated surface plasmon effect.
View Article and Find Full Text PDF