Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Colorless polyimides (CPIs) are widely used as high-performance materials in flexible electronic devices. From a molecular design standpoint, the industry continues to encounter challenges in developing CPIs with desired attributes, including exceptional optical transparency, excellent thermal stability, and enhanced mechanical strength. This study presents and validates a method for controlling 2-substituents, with a specific emphasis on examining how these substituents affect the thermal, mechanical, optical, and dielectric characteristics of CPIs. The presence of two CF groups on the same side of the diamine structure ensured the transmittance of the film. The charge transfer effect and the molecular distance are dynamically regulated by changing the 2-substituent (-OCH/-CH/H/F). The polyimide exhibited a well-maintained equilibrium between transparency and thermal stability, with a value ranging from 86.2 to 89.6% in the visible region, and a glass transition temperature () ranging from 358.6 to 376.0 °C. Additionally, the 6FDA-2-MTFMB compound, when combined with methyl, excels as a protective layer and base material, exhibiting excellent performance in various aspects. It has been verified as an appropriate option for flexible photodetectors and wearable piezoresistive sensors. In summary, this systematic investigation will provide a comprehensive and demonstrative methodology for developing CPIs that are capable of adapting to flexible electronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c09667 | DOI Listing |