A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A machine learning enhanced EMS mutagenesis probability map for efficient identification of causal mutations in Caenorhabditis elegans. | LitMetric

A machine learning enhanced EMS mutagenesis probability map for efficient identification of causal mutations in Caenorhabditis elegans.

PLoS Genet

Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chemical mutagenesis-driven forward genetic screens are pivotal in unveiling gene functions, yet identifying causal mutations behind phenotypes remains laborious, hindering their high-throughput application. Here, we reveal a non-uniform mutation rate caused by Ethyl Methane Sulfonate (EMS) mutagenesis in the C. elegans genome, indicating that mutation frequency is influenced by proximate sequence context and chromatin status. Leveraging these factors, we developed a machine learning enhanced pipeline to create a comprehensive EMS mutagenesis probability map for the C. elegans genome. This map operates on the principle that causative mutations are enriched in genetic screens targeting specific phenotypes among random mutations. Applying this map to Whole Genome Sequencing (WGS) data of genetic suppressors that rescue a C. elegans ciliary kinesin mutant, we successfully pinpointed causal mutations without generating recombinant inbred lines. This method can be adapted in other species, offering a scalable approach for identifying causal genes and revitalizing the effectiveness of forward genetic screens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379379PMC
http://dx.doi.org/10.1371/journal.pgen.1011377DOI Listing

Publication Analysis

Top Keywords

ems mutagenesis
12
causal mutations
12
genetic screens
12
machine learning
8
learning enhanced
8
mutagenesis probability
8
probability map
8
forward genetic
8
identifying causal
8
elegans genome
8

Similar Publications