98%
921
2 minutes
20
Background: Bladder cancer is a prevalent malignant tumor with high heterogeneity. Current treatments, such as transurethral resection of bladder tumor (TURBT) and intravesical Bacillus Calmette-Guérin (BCG) therapy, still have limitations, with approximately 30% of non-muscle-invasive bladder cancer (NMIBC) progressing to muscle-invasive bladder cancer (MIBC), and a substantial number of MIBC patients experiencing recurrence after surgery. Immunotherapy has shown potential benefits, but accurate prediction of its prognostic effects remains challenging.
Methods: We analyzed bladder cancer RNA-seq data and clinical information from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and used various machine learning algorithms to screen for feature RNAs related to tumor-infiltrating immune cells (TIICs) from single-cell data. Based on these RNAs, we established a TIIC signature score and evaluated its relationship with overall survival (OS) and immunotherapy response in bladder cancer patients.
Results: The study identified 171 TIIC-RNAs and selected 11 TIIC-RNAs with prognostic value through survival analysis. The TIIC signature score established using a machine learning fusion method was significantly associated with OS and showed good predictive performance in different datasets. Additionally, the signature score was negatively correlated with immunotherapy response, with patients with low TIIC feature scores showing better survival outcomes after immunotherapy. Further biological functional analysis revealed a close association between the TIIC signature score and immune regulation processes, cellular metabolism, and genetic variations.
Conclusion: This study successfully constructed and validated an RNA signature scoring system based on tumor-infiltrating immune cell (TIIC) features, which can effectively predict OS and the effectiveness of immunotherapy in bladder cancer patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347539 | PMC |
http://dx.doi.org/10.1007/s12672-024-01187-7 | DOI Listing |
Pediatr Surg Int
September 2025
Pediatric Surgery Unit, Department of Women's and Children's Health, University of Padua, Via Nicolò Giustiniani, 35100, Padua, Italy.
Introduction: Brachytherapy has been used for the multimodal treatment of pediatric bladder-prostate rhabdomyosarcoma in the last two decades. The aim of this systematic review is to gather the current evidence about this innovative technique with a special focus on long-term outcomes.
Methods: According to PRISMA criteria, PubMed, Scopus, and Web of Science were searched for papers published between 2000 and 2022.
J Cancer Res Clin Oncol
September 2025
Cancer Treatment and Nuclear Cardiology Department, Al Azhar University, Cairo, Egypt.
Background: High-dose-rate (HDR) brachytherapy is essential in the treatment of locally advanced cervical cancer. While Iridium-192 (Ir-192) is commonly used, its short half-life imposes logistical and financial constraints, particularly in low- and middle-income countries (LMICs). Cobalt-60 (Co-60), with a longer half-life and lower operational costs, is a viable alternative.
View Article and Find Full Text PDFInt J Cancer
September 2025
Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
Bladder cancer (BlCa) exhibits a highly heterogeneous molecular landscape and treatment response, underlining the pressing need for personalized prognosis. N6-methyladenosine (m6A) constitutes the most abundant RNA modification, modulates RNA biology/metabolism, and maintains cellular homeostasis, with its dysregulation involved in cancer initiation and progression. Herein, we evaluated the clinical value of METTL3 m6A methyltransferase, the main catalytic component of m6A methylation machinery, in improving BlCa patients' risk stratification and prognosis.
View Article and Find Full Text PDFCurr Opin Urol
September 2025
Department of Urology, Faculty of Medicine, University of Toyama, Toyama, Japan.
Purpose Of Review: Nonmuscle-invasive bladder cancer (NMIBC) patients with BCG-unresponsive disease have limited treatment options beyond radical cystectomy. With ongoing BCG shortages and the urgent need for bladder-preserving alternatives, this review examines the emerging role of oncolytic virus therapy as a novel intravesical treatment approach for this challenging patient population.
Recent Findings: Multiple oncolytic viral platforms have entered clinical trials for NMIBC treatment, demonstrating promising efficacy and safety profiles.