98%
921
2 minutes
20
Neuroinflammation is a process involved in a variety of central nervous system (CNS) diseases and is being increasingly recognized as a key mediator of cognitive impairments. Neuroinflammatory responses including glial activation, increased production of proinflammatory cytokines, and aberrant neuronal signaling, contribute to cognitive dysfunctions. Histamine is a key peripheral inflammatory mediator, but plays an important role in neuroinflammatory processes as well. The unique localization of histamine H receptor (HR) in the CNS along with the modulation of the release of other neurotransmitters via its action on heteroreceptors on non-histaminergic neurons have led to the development of several HR ligands for various brain diseases. HR antagonists/ inverse agonists have revealed potential to treat diverse neuroinflammatory CNS disorders, including neurodegenerative diseases, attention-deficit hyperactivity syndrome and schizophrenia. In this mini review, we provide a brief overview on the crucial involvement of the histaminergic transmission in the neuroinflammatory processes underlying these cognitive disorders, with a special focus on HR involvement. The anti-neuroinflammatory potential of single-targeted and multi-targeted HR antagonists/inverse agonists for the treatment of these conditions is discussed here.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0115680266322294240816051818 | DOI Listing |
J Agric Food Chem
September 2025
Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.
View Article and Find Full Text PDFBrain
September 2025
Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, 13005 Marseille, France.
The lateral prefrontal cortex (LPFC) serves as a critical hub for higher-order cognitive and executive functions in the human brain, coordinating brain networks whose disruption has been implicated in many neurological and psychiatric disorders. While transcranial brain stimulation treatments often target the LPFC, our current understanding of connectivity profiles guiding these interventions based on electrophysiology remains limited. Here, we present a high-resolution probabilistic map of bidirectional effective connectivity between the LPFC and widespread cortical and subcortical regions.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Neurology, Hospital Universitario Miguel Servet, Zaragoza, Spain.
Background: Stroke is a leading cause of death and disability globally, with frequent cognitive sequelae affecting up to 60% of stroke survivors. Despite the high prevalence of post-stroke cognitive impairment (PSCI), early detection remains underemphasized in clinical practice, with limited focus on broader neuropsychological and affective symptoms. Stroke elevates dementia risk and may act as a trigger for progressive neurodegenerative diseases.
View Article and Find Full Text PDFBackground: Patients who have been treated in intensive care units (ICUs) display a multitude of physical, cognitive, and/or mental impairments that are collectively called post-intensive care syndrome (PICS). People with PICS have difficulty returning to everyday life.
Methods: In this narrative review, we present epidemiologic data, risk factors, and approaches to the prevention and treatment of PICS, along with the evidence supporting them.