Applications of cell free protein synthesis in protein design.

Protein Sci

Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In protein design, the ultimate test of success is that the designs function as desired. Here, we discuss the utility of cell free protein synthesis (CFPS) as a rapid, convenient and versatile method to screen for activity. We champion the use of CFPS in screening potential designs. Compared to in vivo protein screening, a wider range of different activities can be evaluated using CFPS, and the scale on which it can easily be used-screening tens to hundreds of designed proteins-is ideally suited to current needs. Protein design using physics-based strategies tended to have a relatively low success rate, compared with current machine-learning based methods. Screening steps (such as yeast display) were often used to identify proteins that displayed the desired activity from many designs that were highly ranked computationally. We also describe how CFPS is well-suited to identify the reasons designs fail, which may include problems with transcription, translation, and solubility, in addition to not achieving the desired structure and function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344276PMC
http://dx.doi.org/10.1002/pro.5148DOI Listing

Publication Analysis

Top Keywords

protein design
12
cell free
8
free protein
8
protein synthesis
8
protein
6
applications cell
4
synthesis protein
4
design protein
4
design ultimate
4
ultimate test
4

Similar Publications

It has become evident from decades of clinical trials that multimodal therapeutic approaches with focus on cell intrinsic and microenvironmental cues are needed to improve understanding and treat the rare, inoperable, and ultimately fatal diffuse intrinsic pontine glioma (DIPG), now categorized as a diffuse midline glioma. In this study we report the development and characterization of an in vitro system utilizing 3D Tumor Tissue Analogs (TTA), designed to replicate the intricate DIPG microenvironment. The innate ability of fluorescently labeled human brain endothelial cells, microglia, and patient-derived DIPG cell lines to self-assemble has been exploited to generate multicellular 3D TTAs that mimic tissue-like microstructures, enabling an in- depth exploration of the spatio-temporal dynamics between neoplastic and stromal cells.

View Article and Find Full Text PDF

Recent advances in computational strategies for allosteric site prediction: Machine learning, molecular dynamics, and network-based approaches.

Drug Discov Today

September 2025

Department of Pharmaceutical and Artificial-Intelligence Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Cen

The landscape of allosteric drug discovery is undergoing a transformative shift, driven by the integration of three computational approaches: machine learning (ML), molecular dynamics (MD) simulations, and network theory. ML identifies potential allosteric sites from multidimensional biological datasets; MD simulations, empowered by enhanced sampling algorithms, reveal transient conformational states; and network analyses uncover communication pathways, further aiding in site identification. Their synergy enables rational allosteric modulator design.

View Article and Find Full Text PDF

With the continued upsurge of antibiotic resistance and reduced susceptibility to almost all frontline antibiotics, there is a pressing need for the development of new, effective, and safe alternatives. In this study, a scaffold-hopping strategy was utilized to develop a novel class of penicillin-binding protein 2a (PBP2a) inhibitors, centered around a 4H-chromen-4-one core structure. These newly designed compounds demonstrated strong antibacterial efficacy against methicillin-resistant Staphylococcus aureus (MRSA) and other drug-resistant gram-positive pathogens.

View Article and Find Full Text PDF

Sustained release of dual p38 inhibitors via supramolecular hydrogels to enhance cardiac repair after MI/R injury.

Biomaterials

August 2025

Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, 678 Furong Road, Hef

Activation of p38 mitogen-activated protein kinase plays an important role in the progression of ventricular muscle inflammation after myocardial ischemia-reperfusion (MI/R). The inhibition of p38 activation in ischemic myocardium can reduce ventricular muscle remodeling post-MI. However, owing to the dynamic change of p38 in ischemic myocardium after MI, the clinical therapeutic effect of p38 inhibitors is insufficient.

View Article and Find Full Text PDF

Engineering ferroptosis radiosensitizer for SPARC-targeted degradation: A strategy to reverse radioresistant non-small cell lung cancer.

Biomaterials

September 2025

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China. Electronic address: hongj

Radioresistance poses a significant obstacle in the management of Non-Small Cell Lung Cancer (NSCLC), often diminishing the effectiveness of radiotherapy and leading to treatment failures and adverse clinical outcomes. This study develops radioresistant NSCLC models, revealing that Secreted Protein Acidic and Rich in Cysteine (SPARC) as a crucial modulator of this resistance, through the inhibition of ferroptosis. To address this radioresistance, we propose a novel ferroptosis-oriented radiosensitization strategy specifically designed to enhance radiotherapy effectiveness in radioresistant NSCLC.

View Article and Find Full Text PDF