A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Machine learning surveillance of foodborne infectious diseases using wastewater microbiome, crowdsourced, and environmental data. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Clostridium perfringens (CP) is a common cause of foodborne infection, leading to significant human health risks and a high economic burden. Thus, effective CP disease surveillance is essential for preventive and therapeutic interventions; however, conventional practices often entail complex, resource-intensive, and costly procedures. This study introduced a data-driven machine learning (ML) modeling framework for CP-related disease surveillance. It leveraged an integrated dataset of municipal wastewater microbiome (e.g., CP abundance), crowdsourced (CP-related web search keywords), and environmental data. Various optimization strategies, including data integration, data normalization, model selection, and hyperparameter tuning, were implemented to improve the ML modeling performance, leading to enhanced predictions of CP cases over time. Explainable artificial intelligence methods identified CP abundance as the most reliable predictor of CP disease cases. Multi-omics subsequently revealed the presence of CP and its genotypes/toxinotypes in wastewater, validating the utility of microbiome-data-enabled ML surveillance for foodborne diseases. This ML-based framework thus exhibits significant potential for complementing and reinforcing existing disease surveillance systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122282DOI Listing

Publication Analysis

Top Keywords

disease surveillance
12
machine learning
8
surveillance foodborne
8
wastewater microbiome
8
environmental data
8
surveillance
5
learning surveillance
4
foodborne infectious
4
infectious diseases
4
diseases wastewater
4

Similar Publications