Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Hydrocephalus is a challenging neurosurgical condition due to nonspecific symptoms and complex brain-fluid pressure dynamics. Typically, the assessment of hydrocephalus in children requires radiographic or invasive pressure monitoring. There is usually a qualitative focus on the ventricular spaces even though stress and shear forces extend across the brain. Here, the authors present an MRI-based vector approach for voxelwise brain and ventricular deformation visualization and analysis.

Methods: Twenty pediatric patients (mean age 7.7 years, range 6 months-18 years; 14 males) with acute, newly diagnosed hydrocephalus requiring surgical intervention for symptomatic relief were randomly identified after retrospective chart review. Selection criteria included acquisition of both pre- and posttherapy paired 3D T1-weighted volumetric MRI (3D T1-MRI) performed on 3T MRI systems. Both pre- and posttherapy 3D T1-MRI pairs were aligned using image registration, and subsequently, voxelwise nonlinear transformations were performed to derive two exemplary visualizations of compliance: 1) a whole-brain vector map projecting the resulting deformation field on baseline axial imaging; and 2) a 3D heat map projecting the volumetric changes along ventricular boundaries and the brain periphery.

Results: The patients underwent the following interventions for treatment of hydrocephalus: endoscopic third ventriculostomy (n = 6); external ventricular drain placement and/or tumor resection (n = 10); or ventriculoperitoneal shunt placement (n = 4). The mean time between pre- and postoperative imaging was 36.5 days. Following intervention, the ventricular volumes decreased significantly (mean pre- and posttherapy volumes of 151.9 cm3 and 82.0 cm3, respectively; p < 0.001, paired t-test). The largest degree of deformation vector changes occurred along the lateral ventricular spaces, relative to the genu and splenium. There was a significant correlation between change in deformation vector magnitudes within the cortical layer and age (p = 0.011, Pearson), as well as between the ventricle size and age (p = 0.014, Pearson), suggesting higher compliance among infants and younger children.

Conclusions: This study highlights an approach for deformation analysis and vector mapping that may serve as a topographic visualizer for therapeutic interventions in patients with hydrocephalus. A future study that correlates the degree of cerebroventricular deformation or compliance with intracranial pressures could clarify the potential role of this technique in noninvasive pressure monitoring or in cases of noncompliant ventricles.

Download full-text PDF

Source
http://dx.doi.org/10.3171/2024.6.PEDS24117DOI Listing

Publication Analysis

Top Keywords

deformation vector
12
pre- posttherapy
12
cerebroventricular deformation
8
vector mapping
8
topographic visualizer
8
pressure monitoring
8
ventricular spaces
8
map projecting
8
vector
6
hydrocephalus
6

Similar Publications

A two-axis thrust stand is developed and validated experimentally, enabling direct and simultaneous measurements of two components of the thrust vector of an electric thruster. It is made of two piled-up single-axis stages, each having a hanging deformable parallelogram geometry. A mass deposition calibration method is used to calibrate the thrust stand, including crosstalk between axes.

View Article and Find Full Text PDF

Bone infections caused by and are serious complications in orthopedic surgery. These infections commonly occur in joint replacements, fracture management, and bone grafting procedures. Rapid and accurate pathogen-specific diagnostic methods are urgently needed to support early clinical decisions.

View Article and Find Full Text PDF

Background: The generation of intelligible speech is the single most important outcome after cleft palate repair. The development of velopharyngeal dysfunction (VPD) compromises the outcome, and the burden of VPD remains largely unknown in low- and middle-income countries (LMICs). To scale up VPD care in these areas, we continue to explore the use of artificial intelligence (AI) and machine learning (ML) for automatic detection of VPD from speech samples alone.

View Article and Find Full Text PDF

Background: Accurate prediction of lung tumor motion and deformation (LTMD) is essential for precise radiotherapy. However, existing models often rely on static, population-based material parameters, overlooking patient-specific and time-varying lung biomechanics. Personalized dynamic models that capture temporal changes in lung elasticity are needed to improve LTMD prediction and guide treatment planning more effectively.

View Article and Find Full Text PDF

Zika virus is spread to human populations primarily by Aedes aegypti mosquitoes, and Zika virus disease has been linked to a number of developmental abnormalities and miscarriages, generally coinciding with infection during early pregnancy. In this paper, we propose a new mathematical model for the transmission of Zika and study a range of control strategies to reduce the incidence of affected pregnancies in an outbreak. While most infectious disease models primarily focus on measures of the spread of the disease, our model is formulated to estimate the number of affected pregnancies throughout the simulated outbreak.

View Article and Find Full Text PDF