98%
921
2 minutes
20
A comprehensively analysis of the transcriptomics and metabolomics was conducted to investigate the mechanism of plant growth regulators on the quality of jujube fruit. After the application of plant growth regulators, a total of 3097 differentially expressed genes (DEGs) were identified, which were mainly annotated in 123 pathways such as flavonoid biosynthesis, metabolism of alanine, aspartate, and glutamate. In addition, 1091 differential expressed metabolites (DEMs), including 519 up-regulated and 572 down-regulated metabolites, were significantly altered after application of plant growth regulators. DEGs and DEMs simultaneously annotated 69 metabolic pathways, including biosynthesis of phenylpropane, flavonoid, starch and sucrose. The key genes in flavonoid biosynthesis pathway were revealed, which may play an important role in plant growth regulator regulation quality of jujube fruit. Besides, the application of plant growth regulator during the jujube flowering period increased the contents of gibberellin and indole-3-acetic acid in leaves, and decreased the contents of abscisic acid. The results may help to reveal the metabolic network and molecular mechanism of plant growth regulators in jujube fruit.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343422 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305185 | PLOS |
Appl Biochem Biotechnol
September 2025
Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, 51452, Qassim, Saudi Arabia.
Viruses are minuscule entities that cannot survive independently without a Living host. Pathogenic viruses pose a significant threat to global health, resulting annually in the deaths of thousands of people. Recent studies indicate that medicinal plants may serve as an effective source of sustainable natural antiviral agents.
View Article and Find Full Text PDFPlant Cell Rep
September 2025
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
Plasma membrane Gγ protein MGG4, the candidate for maize yield QTL, positively regulates seed size mainly through affecting kernel width.
View Article and Find Full Text PDFMycorrhiza
September 2025
Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
Ectomycorrhizal fungi (EMF) colonize roots to establish symbiotic associations with plants. Sporocarps of the EMF Tuber spp. are considered as a delicacy in numerous countries and is a kind of EMF of great economic and social importance.
View Article and Find Full Text PDFNaturwissenschaften
September 2025
Colorado Water Center, Colorado State University, Fort Collins, CO, 80523, USA.
Drought stress is the most vulnerable abiotic factor affecting plant growth and yield. The use of silicic acid as seed priming treatment is emerging as an effective approach to regulate maize plants susceptibility to water stress. The study was formulated for investigating the effect of silicic acid seed priming treatment in modulating the oxidative defense and key physio-biochemical attributes of maize plants under drought stress conditions.
View Article and Find Full Text PDFInt J Phytoremediation
September 2025
Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India.
The present study aimed to explore the potential of Indian mustard ( L.) for phytoremediation of soil contaminated with ciprofloxacin. The antibiotic ciprofloxacin was selected due to its rapidly increasing presence in soil.
View Article and Find Full Text PDF