98%
921
2 minutes
20
The aim of this study was to investigate alterations in gray matter structure among individuals diagnosed with diabetic retinopathy (DR). This study included a cohort of 32 diabetic patients with retinopathy (DR group, n = 32) and 38 healthy adults (HC group, n = 38). Both cohorts underwent comprehensive psychological and cognitive assessments alongside structural magnetic resonance imaging. The brain's gray matter volume and morphology were analyzed using voxel-based morphometry (VBM) and surface-based morphometry (SBM). Partial correlation analysis was employed to investigate the associations between differences in gray matter volume (GMV) across diverse brain regions and the outcomes of cognitive psychological tests as well as clinical indicators. The VBM results revealed that, in comparison to the healthy control (HC) group, patients with diabetic retinopathy (DR) exhibited reduced gray matter volume (GMV) in the right fusiform gyrus, inferior frontal gyrus, opercular part, and left hippocampus; conversely, an increase in GMV was observed in the right thalamus. The SBM results indicated cortical thinning in the left caudal anterior cingulate cortex, left superior frontal gyrus, left parahippocampal gyrus, and bilateral lingual gyrus in the DR group. Sulcal depth (SD) exhibited increased values in the bilateral rostral middle frontal gyrus, superior frontal gyrus, frontal pole, left precentral gyrus, postcentral gyrus, lateral orbitofrontal gyrus, and right paracentral gyrus. Local gyrification indices (LGIs) decreased in the left caudal middle frontal gyrus and superior frontal gyrus. The fractal dimension (FD) decreased in the posterior cingulate gyrus and isthmus of the cingulate gyrus. The left hippocampal gray matter volume (GMV) in patients with diabetic retinopathy was negatively correlated with disease duration (r = -0.478, p = 0.008) and self-rating depression scale (SAS) score (r = -0.381, p = 0.038). The structural alterations in specific brain regions of individuals with DR, which may contribute to impairments in cognition, emotion, and behavior, provide valuable insights into the neurobiological basis underlying these dysfunctions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11682-024-00905-7 | DOI Listing |
Brain
September 2025
Center for Brain Plasticity and Recovery, Center for Aphasia Research and Rehabilitation, Departments of Neurology and Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, 20057 USA.
The role of the right hemisphere in aphasia recovery has been controversial since the 19th century. Imaging studies have sometimes found increased activation in right hemisphere regions homotopic to canonical left hemisphere language regions, but these results have been questioned due to small sample sizes, unreliable imaging tasks, and task performance confounds that affect right hemisphere activation levels even in neurologically healthy adults. Several principles of right hemisphere language recruitment in aphasia have been proposed based on these studies: that the right hemisphere is recruited primarily by individuals with severe left hemisphere damage, that transcallosal disinhibition results in recruitment of right hemisphere regions homotopic to the lesion, and that increased right hemisphere activation diminishes to baseline levels over time.
View Article and Find Full Text PDFFront Hum Neurosci
August 2025
Faculty of Human Sciences, Waseda University, Tokorozawa, Japan.
Suppressing irrelevant information during problem-solving is vital. Misleading or unrelated information may hinder the performance. However, previous studies inferred suppression-related brain regions based on overall problem-solving or pre-solution neural activity, resulting in insufficient experimental control over the precise timing of suppression and the types of information requiring suppression.
View Article and Find Full Text PDFImaging Neurosci (Camb)
September 2025
Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, Japan.
Time perception is an essential aspect of daily life, and transitional probabilities can be learned based on temporal durations that are independent of individual objects. Previous studies on temporal and spatial visual statistical learning (VSL) have shown that the hippocampus and lateral occipital cortex are engaged in learning visual regularities. However, it remains unclear whether VSL on temporal duration unlinked to object identity is represented in brain regions involved in VSL and object recognition or in those involved in time perception without sensory cortex involvement.
View Article and Find Full Text PDFHum Brain Mapp
September 2025
Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.
Acting intentionally is a major aspect of human cognitive development and depends on the ability to link actions with their consequences. Action-effect binding (AEB) is a fundamental mechanism enabling this. While AEB has been well-characterized in adults, its neurophysiological underpinnings during adolescence remain unclear.
View Article and Find Full Text PDFCurr Alzheimer Res
September 2025
Department of Neurology, the Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China.
Introduction: The complement receptor 1 (CR1) gene is identified as the one closely associated with Alzheimer's disease (AD). However, there has been no exploration of the imaging alterations associated with the CR1 gene in AD patients of the Han population. The purpose of this study is to investigate the association between the rs6656401 mutation and neuroimaging variations in Han AD patients.
View Article and Find Full Text PDF