Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Measurements of stable isotope ratios in organic compounds are widely used tools for plant ecophysiological studies. However, the complexity of the processes involved in shaping hydrogen isotope values (δH) in plant carbohydrates has limited its broader application. To investigate the underlying biochemical processes responsible for H fractionation among water, sugars, and cellulose in leaves, we studied the three main CO fixation pathways (C, C, and CAM) and their response to changes in temperature and vapor pressure deficit (VPD). We show significant differences in autotrophic H fractionation (ε) from water to sugar among the pathways and their response to changes in air temperature and VPD. The strong H depleting ε in C plants is likely driven by the photosynthetic H production within the thylakoids, a reaction that is spatially separated in C and strongly reduced in CAM plants, leading to the absence of H depletion in the latter two types. By contrast, we found that the heterotrophic H-fractionation (ε) from sugar to cellulose was very similar among the three pathways and is likely driven by the plant's metabolism, rather than by isotopic exchange with leaf water. Our study offers new insights into the biochemical drivers of H fractionation in plant carbohydrates.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.20057DOI Listing

Publication Analysis

Top Keywords

hydrogen isotope
8
plant carbohydrates
8
fractionation water
8
response changes
8
fractionation
4
isotope fractionation
4
fractionation plants
4
plants cam
4
cam fixation
4
fixation measurements
4

Similar Publications

The human kidneys play a pivotal role in regulating blood pressure, water, and salt homeostasis, but assessment of renal function typically requires invasive methods. Deuterium metabolic imaging (DMI) is a novel, noninvasive technique for mapping tissue-specific uptake and metabolism of deuterium-labeled tracers. This study evaluates the feasibility of renal DMI at 7-Tesla (7T) to track deuterium-labeled tracers with high spatial and temporal resolution, aiming to establish a foundation for potential clinical applications in the noninvasive investigation of renal physiology and pathophysiology.

View Article and Find Full Text PDF

Animal migration remains poorly understood for many organisms, impeding understanding of movement dynamics and limiting conservation actions. We develop a framework that scales from movements of individuals to the dynamics of continental migration using data synthesis of endogenous markers, which we apply to three North American bat species with unexplained high rates of fatalities at wind energy facilities. The two species experiencing the highest fatality rates exhibit a "pell-mell" migration strategy in which individuals move from summer habitats in multiple directions, both to higher and lower latitudes, during autumn.

View Article and Find Full Text PDF

Confronting the dual challenges of carbon neutrality and sustainable energy, photocatalytic CO reduction requires precise control over product selectivity. This study demonstrates that surface hydroxyl (-OH) density serves as a molecular switch for reaction pathways in graphene oxide/cobalt tetraphenylporphyrin (GO/CoTPP) hybrids. By tuning the reduction degree of GO supports via gradient hydrazine hydrate treatment (0-85%), we constructed catalysts with controlled -OH concentrations.

View Article and Find Full Text PDF

Cation Dehydration by Surface-Grafted Phenyl Groups for Enhanced C Production in Cu-Catalyzed Electrochemical CO Reduction.

J Am Chem Soc

September 2025

Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering, École Polytechnique Fédéralede Lausanne (EPFL), Lausanne 1015, Switzerland.

The challenge to produce multicarbon (C) products in high current densities in the electrochemical reduction of carbon dioxide (CORR) has motivated intense research. However, the ability of solvated cations to tune and activate water for C production in the CORR has been overlooked. In this study, we report the incorporation of a covalently grown layer of functionalized phenyl groups on the Cu surface that leads to a 7-fold increase in ethylene production (to -530 mA cm) and a 6-fold increase in C products (to -760 mA cm).

View Article and Find Full Text PDF

Strong Trapping Capability and Diffusion Suppression Effect of Silicon Carbide Surface on Tritium: A First Principle Study.

ACS Appl Mater Interfaces

September 2025

Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084, China.

Silicon carbide (SiC) has attracted considerable interest for use in electronics, aerospace, and nuclear energy applications owing to its excellent electrical and mechanical properties. In the nuclear industry, SiC serves as an effective tritium permeation barrier. However, a significant discrepancy remains between the experimentally measured diffusion coefficients and the theoretical predictions.

View Article and Find Full Text PDF