Advanced seismic resilient performance of steel MRF equipped with viscoelastic friction dampers.

Sci Rep

School of Intelligent Transportation and Engineering, Guangzhou Maritime University, 101 Hongshansan Road, Huangpu District, Guangzhou, 510000, China.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper demonstrates the enhanced resilience performance of steel structures with viscoelastic friction dampers (VEFDs) based on numerical simulations of building responses. Velocity-dependent dampers, which are widely used to increase seismic resilience, may increase the axial force of the column under strong earthquake conditions because the generated force depends on the interstory velocity. This often leads to plastic hinges being placed on the columns of the structure, which can lead to structural collapse via weak-layer failure. In addition, while viscoelastic dampers are effective in reducing story drift, peak acceleration, and peak velocity, the proposed hybrid VEFD offers the additional benefit of reducing base shear via the friction damper. Simulation results for 10- and 20-story buildings with the novel VEFDs show that the proposed dampers can control drift and plastic deformation in structural members. Nonlinear dynamic analysis of 20 far-fault seismic ground motion records conducted using OpenSees also reveals lower peak absolute floor acceleration and velocity. Overall, the results suggest that the proposed VEFD has excellent potential for use in the performance-based seismic design of structures because it can reduce both structural and nonstructural damage. The results verify the damper's effectiveness in controlling story drift without a significant increase in the base shear. Collapse probability assessment also demonstrates the collapse resistance of moment-resisting frames when used in conjunction with VEFDs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339266PMC
http://dx.doi.org/10.1038/s41598-024-70280-2DOI Listing

Publication Analysis

Top Keywords

performance steel
8
viscoelastic friction
8
friction dampers
8
story drift
8
velocity proposed
8
base shear
8
dampers
5
advanced seismic
4
seismic resilient
4
resilient performance
4

Similar Publications

Fe-X (X=C, P, S) atom pair-decorated g-CN monolayers for sensing toxic thermal runaway gases in lithium-ion batteries: A DFT Study.

Environ Res

September 2025

Jiangxi Provincial Key Laboratory of High-Performance Steel and Iron Alloy Materials,Jiangxi University of Science and Technology, Ganzhou 34100, China; School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou 34100, China. Electronic address:

The thermal runaway of lithium-ion batteries (LIBs) releases a mixture of toxic and explosive gases, posing severe safety risks. High-performance sensors are critical for the early detection of these thermal runaway gases (TRGs) to prevent accident escalation. Herein, we systematically investigate Fe-X (X=C, P, S) atomic pair-modified g-CN (FCN, FPN, FSN) monolayers as potential sensing materials for six TRGs (CO, CO, H, CH, CH, and CH) using first-principles calculations.

View Article and Find Full Text PDF

Anode-free sulfide-based all-solid-state lithium metal batteries (ASSLMBs), which eliminate the need for a lithium metal anode during fabrication, offer superior energy density, enhanced safety, and simplified manufacturing. Their performance is largely influenced by the interfacial properties of the current collectors. Although previous studies have investigated the degradation of sulfide electrolytes on commonly used copper (Cu) and stainless steel (SS) current collectors, the impact of spontaneously formed surface oxides, such as copper oxide (CuO/CuO) and chromium oxide (CrO), on interfacial stability remains underexplored.

View Article and Find Full Text PDF

Background: Effects of ground surface and hoof angles on equine cervical and thoracolumbosacral kinematics are poorly understood. However, the equine cervical and thoracolumbosacral areas present frequent lesions and he management of factors that might improve treatment and rehabilitation outcomes, such as ground surface and hoof angles, requires more investigation.

Aims: Our objectives were to determine the influence of ground surface (asphalt versus sand) and a 3 degrees hind toe or heel elevation on cervical and thoracolumbosacral kinematics during walking and trotting.

View Article and Find Full Text PDF

The dissolution of CO in oilfield produced water causes severe pipeline corrosion and economic losses, highlighting the critical need for medium-high temperature corrosion inhibitors for carbon steel protection. Imidazoline derivative corrosion inhibitors S4-C7 (thiophene-imidazoline octanamide), S4-C9 (thiophene-imidazoline decanamide), S4-C11 (thiophene-imidazoline lauramide) and S4-C13 (thiophene-imidazoline myristamide) with different carbon chain lengths were synthesized by modifying thiophene-imidazoline with different organic acids. At medium-high temperatures, weight loss measurements, electrochemical tests, surface morphology analysis, and theoretical calculations were employed to investigate their inhibition performances and mechanisms in CO-containing solutions.

View Article and Find Full Text PDF

Economic and environmental analysis of coking coal and solid recovered fuels supply to European steelmaking plants.

J Environ Manage

September 2025

Department of Materials, Textiles and Chemical Engineering, Research Group Sustainable Materials Science, Ghent University (UGent), Technologiepark 46, Ghent, 9052, Belgium. Electronic address:

This study assesses the economic and environmental performance of the supply chain of coking coal and solid recovered fuel-an often overlooked component of product life cycles-to fifteen European steel plants, by investigating different input combinations and transport methods across six scenarios including imports from both within and outside Europe via ship, road, rail, and river. Results showed that Pre-2022, abroad coking coal was cheaper than local coal, but in 2022, a sharp rise in global prices was driven by three key factors: the European ban on Russian imports, the continental energy crisis, and global shipping disruptions, rendering local coal cheaper. By 2023-2024, markets stabilized, reverting toward pre-pandemic levels.

View Article and Find Full Text PDF