Insecticidal activities of three recombinant venom proteins of the predatory stink bug, Arma custos.

Pest Manag Sci

Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Widespread resistance of insect pests to insecticides and transgenic crops in the field is a significant challenge for sustainable agriculture, and calls for the development of novel alternative strategies to control insect pests. One potential resource for the discovery of novel insecticidal molecules is natural toxins, particularly those derived from the venoms of insect predators.

Results: In this study, we identified three insecticidal proteinaceous toxins from the venom glands (VGs) of the predatory stink bug, Arma custos (Hemiptera: Asopinae). Transcriptomic analysis of A. custos VGs revealed 151 potentially secreted VG-rich venom proteins. Three VG-rich venom proteins (designated AcVP1 ~ 3) were produced by overexpression in Escherichia coli. Injection of the recombinant proteins into tobacco cutworm (Spodoptera litura) larvae showed that all of the three recombinant proteins caused paralysis, liquefaction and death. Injection of recombinant proteins into rice brown planthopper (Nilaparvata lugens) nymphs showed higher insecticidal activities, among which a trypsin (AcVP2) caused 100% mortality postinjection at 1.27 pmol mg body weight.

Conclusion: A natural toolkit for the discovery of insecticidal toxins from predatory insects has been revealed by the present study. © 2024 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.8382DOI Listing

Publication Analysis

Top Keywords

venom proteins
12
recombinant proteins
12
insecticidal activities
8
three recombinant
8
predatory stink
8
stink bug
8
bug arma
8
arma custos
8
insect pests
8
vg-rich venom
8

Similar Publications

Proteomic characterization and lethality of the venom of the Black Judean scorpion, Hottentotta judaicus (Buthidae): expanded toxin diversity and revisited toxicological significance.

Arch Toxicol

September 2025

Laboratorio de Proteómica, Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, 11501, Costa Rica.

The scorpion Hottentotta judaicus inhabits the Levant region of the Middle East, including Lebanon, Jordan, Palestine, and Israel. While previous research focused on its insecticidal properties and sodium-channel-targeting toxins, its venom remains largely unexplored using modern proteomic approaches. We analyzed the venom composition of H.

View Article and Find Full Text PDF

NSG-SGM3 humanized mouse models are well-suited for studying human immune physiology but are technically challenging and expensive. We previously characterized a simplified NSG-SGM3 mouse, engrafted with human donor CD34 hematopoietic stem cells without receiving prior bone marrow ablation or human secondary lymphoid tissue implantation, that still retains human mast cell- and basophil-dependent passive anaphylaxis responses. Its capacities for human antibody production and human B cell maturation, however, remain unknown.

View Article and Find Full Text PDF

NPY-functionalized niosomes for targeted delivery of margatoxin in breast cancer therapy.

Med Oncol

September 2025

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.

View Article and Find Full Text PDF

IMRC-Exo mitigates venom-induced limb injury in rabbits by inhibiting GSDME-dependent pyroptosis.

J Venom Anim Toxins Incl Trop Dis

September 2025

Department of Emergency, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, Zhejiang, China.

Background: Inflammation plays a critical role in the pathogenesis of limb injury caused by snakebite. Investigating its regulatory mechanisms and intervention strategies may help identify effective treatments. Recent studies have shown that pyroptosis exacerbates organ damage by amplifying inflammatory responses.

View Article and Find Full Text PDF

Social wasps make up a significant part to the diversity of the Hymenoptera order, one of the most varied insect groups. Beyond their ecological importance, these insects use their venom for defense, protecting their colonies. The venom of social wasps are rich in biologically active substances, including biogenic amines, peptides, proteins, enzymes, allergens, and volatile compounds.

View Article and Find Full Text PDF