Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A classical non-polarizable force field for the common halide (F-, Cl-, Br-, and I-) and alkali (Li+, Na+, K+, and Cs+) ions in SPC/E water is presented. This is an extension of the force field developed by Loche et al. for Na+, K+, Cl-, and Br- (JPCB 125, 8581-8587, 2021): in the present work, we additionally optimize Lennard-Jones parameters for Li+, I-, Cs+, and F- ions. Li+ and F- are particularly challenging ions to model due to their small size. The force field is optimized with respect to experimental solvation free energies and activity coefficients, which are the necessary and sufficient quantities to accurately reproduce the electrolyte thermodynamics. Good agreement with experimental reference data is achieved for a wide range of concentrations (up to 4 mol/l). We find that standard Lorentz-Berthelot combination rules are sufficient for all ions except F-, for which modified combination rules are necessary. With the optimized parameters, we show that, although the force field is only optimized based on thermodynamic properties, structural properties are reproduced quantitatively, while ion diffusion coefficients are in qualitative agreement with experimental values.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0217998DOI Listing

Publication Analysis

Top Keywords

force field
20
thermodynamic properties
8
wide range
8
range concentrations
8
cl- br-
8
cs+ ions
8
field optimized
8
agreement experimental
8
combination rules
8
force
5

Similar Publications

The regulation of droplet dynamics based on external electric fields and bioinspired functional surfaces has widespread applications in various fields. However, research on the coupling of these two factors to enhance oil-water separation efficiency is urgently needed. In this study, laser-induced and solvent treatment techniques were coupled to assemble a micronano setal and bioinspired beetle elytra textured substrate with the lotus effect, A "top conductive, bottom insulating" Desert beetle elytra micronano tuft composite texture (DBE) biomimetic superhydrophobic surface was fabricated.

View Article and Find Full Text PDF

Regional changes in shear modulus of the biceps femoris long head following load application to the biceps femoris short head.

J Biomech

September 2025

Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Japan; Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan. Electronic address:

Understanding the mechanical behavior of the biceps femoris long head (BFlh) may be insightful due to its high susceptibility to strain injuries, particularly during high-speed running in sports, such as soccer and track and field. While prior research has focused on intrinsic muscle properties, emerging evidence suggests that the biceps femoris short head (BFsh) may influence BFlh tension. Thus, we examined the effects of BFsh load application on the tensile strength and regional shear modulus of the BFlh.

View Article and Find Full Text PDF

Hamiltonian Grid-Based QM/MM Method with Mean-Field Embedding for Simulating Arbitrary Slab Geometries.

J Chem Theory Comput

September 2025

Materials DX Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.

The quantum mechanics/molecular mechanics (QM/MM) method is a powerful approach for investigating solid surfaces in contact with various types of media, since it allows for flexible modeling of complex interfaces while maintaining an all-atom representation. The mean-field QM/MM method is an average reaction field model within the QM/MM framework. The method addresses the challenges associated with the statistical sampling of interfacial atomic configurations of a medium and enables efficient calculation of free energies.

View Article and Find Full Text PDF

The recent observational evidence of deviations from the Lambda cold dark matter model points toward the presence of evolving dark energy. The simplest possibility consists of a cosmological scalar field φ, dubbed "quintessence," driving the accelerated expansion. We assess the evidence for the existence of such a scalar field.

View Article and Find Full Text PDF