98%
921
2 minutes
20
Bacterial resistance to conventional antibiotics has created an urgent need to develop enhanced alternatives. Nanocomposites combined with promising antibacterial nanomaterials can show improved antimicrobial activity compared to that of their components. In this work, green synthesized CuO nanoparticles (NPs) supported on an anionic clay with a hydrotalcite-like structure such as Zn-Al layered double hydroxide (LDH) nanocomposite were investigated as antimicrobial agents. This nanocomposite was synthesized using sp. ISP-2 27 cell-free supernatant to form CuO NPs on the surface of previously synthesized LDH. The prepared samples were characterized using UV-Vis spectrophotometry, XRD, FTIR, Field emission scanning electron microscopy with EDX, zeta potential, and hydrodynamic particle size. UV-vis spectral analysis of the biosynthesized CuO NPs revealed a maximum peak at 300 nm, indicating their successful synthesis. The synthesized CuO NPs had a flower-like morphology with a size range of 43-78 nm, while the LDH support had a typical hexagonal layered structure. The zeta potentials of the CuO NPs, Zn-Al LDH, and CuO NPs/LDH nanocomposite were -21.4, 22.3, and 30.8 mV, respectively, while the average hydrodynamic sizes were 687, 735, and 528 nm, respectively. The antimicrobial activity of the produced samples was tested against several microbes. The results demonstrated that the nanocomposite displayed superior antimicrobial properties compared to those of its components. Among the microbes tested, ATCC 7644 was more sensitive (30 ± 0.34) to the biosynthesized nanocomposite than to CuO NPs (25 ± 0.05) and Zn-Al LDH (22 ± 0.011). In summary, the use of nanocomposites with superior antimicrobial properties has the potential to offer innovative solutions to the global challenge of antibiotic resistance by providing alternative treatments, reducing the reliance on traditional antibiotics, and contributing to the development of more effective and targeted therapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325407 | PMC |
http://dx.doi.org/10.1021/acsomega.4c02133 | DOI Listing |
Anal Chim Acta
November 2025
Department of Physics, University of Lucknow, Lucknow, India; Department of Physics and Astrophysics, University of Delhi, India. Electronic address:
Background: Water contamination is a global challenge, primarily due to heavy metal ions like lead (Pb), iron (Fe), cadmium (Cd), andmercury (Hg) as well as dyes. These pollutants enter the ecosystem from industrial waste and runoff, accumulate in the environment and pose a high risk to humans, animals and plants. Various sensors, such as colorimetric sensors, and electrochemical sensors have been developed to detect these ions and dyes.
View Article and Find Full Text PDFRSC Adv
August 2025
Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax P.O. Box 1177 3018 Sfax Tunisia.
Numerous studies have demonstrated the antiproliferative potential of copper-based nanoparticles (Cu-based NPs) in antibacterial and anticancer applications. This study investigates how thermal annealing influences the structural, optical, and antibacterial properties of Cu-based NPs. X-ray diffraction (XRD) analysis revealed a monoclinic CuSO(OH) phase for the as-prepared powder, and monoclinic CuO phase after annealing, alongside a notable increase in crystallite size from 8.
View Article and Find Full Text PDFDrug Deliv Transl Res
August 2025
Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 1 El Khartoum Square, PO Box 21521, Alexandria, Egypt.
Biopolymer-based composite films were primed by incorporating alginate and zein natural polymers using a solution-casting method and superbly assisted by eco-friendly prepared copper oxide nanoparticles (CuO NPs). The influence of the addition method of CaCl as a crosslinker and CuO NPs loading content (0.1, 0.
View Article and Find Full Text PDFNanoscale Adv
August 2025
Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University P. O. Box 960 Abha 61421 Saudi Arabia.
The continuous increase in population and industrial activity in several areas, including textiles, leather, plastics, cosmetics, and food processing, produces harmful organic pollutants such as azo dyes, which are harmful to aquatic life and cause water pollution. The remediation of these dyes using photo-responsive metallic nanoparticles (NPs) has become a viable technique for the purification of water. This study synthesized ZnO NPs, CuO NPs, and ZnO/CuO nanocomposites using leaf extract.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2025
Innovative Global Program, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan.
Significant concerns regarding the impact of copper (Cu) and copper oxide (CuO) nanoparticles (NPs) and microparticles (MPs) on plant systems have been brought to light through the growing use of these materials in industry and agriculture. The properties of NPs are critical in determining their uptake by plant cells and the ensuing effects on plant physiology. This emphasizes the need for accurate monitoring techniques to determine the impact caused by NPs on seed development and plant growth.
View Article and Find Full Text PDF