Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tungsten diselenide (WSe) is a 2D semiconducting material, promising for novel optoelectronic and phononic applications. WSe has complex lattice dynamics and phonon structure. Numerous discrepancies in the literature exist regarding the interpretation and identification of phonon modes. This work presents a complete investigation of the vibrational properties of 1L to 5L flakes and bulk WSe using multi-wavelength Raman spectroscopy. We especially highlight measurements using 785 nm excitation, which have not been performed before. These allow us to solve inconsistences in the literature in terms of defect-activated non- point single phonon modes and Breit-Wigner-Fano type resonance. We identify 35 Raman peaks per flake thickness, which we attribute to either one-phonon or multi-phonon modes, including two-phonon scattering due to a van Hove singularity (vHs). The measurements are in excellent agreement with the theoretical predictions. Using photoluminescence measurements, we identify photon-exciton coupling leading to resonant Raman scattering, suggesting wavelength laser excitations best suited for further investigations of specific WSe flake thicknesses. Finally, we report the observation of phonon-cascades for all WSe flake thicknesses, indicating strong phonon-electron interactions during early carrier relaxation processes in WSe. This research provides a solid foundation and reference for future investigations of the vibrational properties of WSe, paving the way for further development of this material towards applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325308PMC
http://dx.doi.org/10.1039/d4na00399cDOI Listing

Publication Analysis

Top Keywords

wse
8
raman scattering
8
phonon modes
8
vibrational properties
8
wse flake
8
flake thicknesses
8
phonon
5
unveiling complex
4
complex phonon
4
phonon nature
4

Similar Publications

Seamless integration of active devices into photonic integrated circuits remains a challenge due to the limited accessibility of the optical field in conventional waveguides, which tightly confine light within their cores. In this study, we propose a two-dimensional (2D) ultrathin waveguide as a photonic platform that enables efficient interaction between guided light and surface-mounted devices by supporting optical modes dominated by evanescent fields. We show that the guided light in a monolayer MoS film propagates over millimeter-scale distances with more than 99.

View Article and Find Full Text PDF

Aluminum-doped copper indium gallium selenide/sulfide (CIGAS) is a favorable absorber material for solar cell applications; however, the number of reports on CIGAS solar cells currently remains limited. In this study, we therefore employed SCAPS-1D software for the theoretical modeling of CIGAS thin film solar cells and investigated the effect of material properties and device configurations on solar cell photovoltaic (PV) parameters. Initially, key parameters such as thickness and charge carrier concentrations of each layer used in CIGAS PV devices were studied and optimized to obtain suitable conditions for high device performance.

View Article and Find Full Text PDF

Advancing both the fundamental understanding and technological application of two-dimensional semiconducting transition metal dichalcogenides (TMDs) hinges on precise control and identification of atomic-scale defects. Although self-flux growth yields exceptionally pure TMD crystals, the nature of residual defects has remained an open question. Here, we use scanning tunneling microscopy (STM) to directly image and identify point defects in both monolayer and bulk self-flux grown WSe.

View Article and Find Full Text PDF

1-TaS is a layered charge density wave (CDW) crystal exhibiting sharp phase transitions and associated resistance changes. These resistance steps could be exploited for information storage, underscoring the importance of controlling and tuning the CDW states. Given the importance of out-of-plane interactions in 1-TaS, modulating interlayer interactions by heterostructuring is a promising method for tailoring CDW phase transitions.

View Article and Find Full Text PDF