Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hofmann coordination polymers (CPs) with cationic ligands provide an innovative strategy for recognizing π-electron-rich aromatic molecules - similar to the "little blue box". In this study, we demonstrate that hydroquinone molecules can be incorporated into these coordination polymers when redox-active bipyridinium derivatives are used as axial ligands. The insertion leads to a significant structural modification, resulting in a shift of the spin transition by 150 K and an approximate 23 % increase in volume, caused by the strong donor-acceptor π-π stacking interaction formed between the ligands and the guest molecule. These findings have been confirmed through temperature-dependent single crystal X-ray diffraction, magnetic measurements and optical reflectivity measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202412525DOI Listing

Publication Analysis

Top Keywords

coordination polymers
8
hofmann clathrates
4
clathrates "blue
4
"blue box"
4
box" approach
4
approach modulate
4
modulate spin-crossover
4
spin-crossover properties
4
properties hofmann
4
hofmann coordination
4

Similar Publications

[Cu(3-bph)(PABA)(HO)] () (3-bph = ,'-bis(3-pyridylmethylene)hydrazine and PABA = -amino benzoate) is a pyridyl-N bridging Cu coordination polymer, and PABA acts as a carboxylate-O donor forming a square pyramidal CuNO motif following a zigzag one-dimensional (1D) lattice. The shows weak antiferromagnetic coupling ( = -0.196(1) cm), and emission appears at 352 nm (λ = 293 nm), which is selectively quenched by Fe via the FRET mechanism.

View Article and Find Full Text PDF

Ultrafast Al⁺ Conduction through Cooperative Bonding in Disordered Polycarbonate-Polyether Electrolytes.

Small Methods

September 2025

Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics, Science and Technology, Hebei University, Baoding, 071002, China.

As a new generation of high-energy-density energy storage system, solid-state aluminum-ion batteries have attracted much attention. Nowadays polyethylene oxide (PEO)-based electrolytes have been initially applied to Lithium-ion batteries due to their flexible processing and good interfacial compatibility, their application in aluminum-ion batteries still faces problems. To overcome the limitations in aluminum-ion batteries-specifically, strong Al coordination suppressing ion dissociation, high room-temperature crystallinity, and inadequate mechanical strength-this study develops a blended polymer electrolyte (BPE) of polypropylene carbonate (PPC) and PEO.

View Article and Find Full Text PDF

Ionic conductivity mechanisms in PEO-NaPF electrolytes.

Nanoscale

September 2025

Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342030, India.

Understanding ion transport mechanisms in sodium ion-based polymer electrolytes is critical, considering the emergence of sodium ion electrolyte technologies as sustainable alternatives to lithium-based systems. In this paper, we employ all-atom molecular dynamics simulations to investigate the salt concentration () effects on ionic conductivity () mechanisms in sodium hexafluorophosphate (NaPF) in polyethylene oxide (PEO) electrolytes. Sodium ions exhibit ion solvation shell characteristics comparable to those of lithium-based polymer electrolytes, with similar anion coordination but more populated oxygen coordination in the polymer matrix.

View Article and Find Full Text PDF

Optimal skin healing is a sophisticated, coordinated process involving cellular and molecular interactions. Disruptions in this process can result in chronic wounds, necessitating medical intervention, particularly when the damage surpasses the body's regenerative capabilities. In response, novel therapies, especially tissue engineering and stem cell treatments, have been devised to restore tissue architecture and maximum functionality.

View Article and Find Full Text PDF

Molecular Extrusion Drives Polymer Dynamic Soft Encapsulation to Inhibit Lead Leakage for Efficient Inverted Perovskite Solar Cells and Modules.

Adv Mater

September 2025

School of Physical Science and Technology, College of Energy, School of Optoelectronic Science and Engineering, Soochow University, Suzhou, 215000, P. R. China.

Polymer additives exhibit unique advantages in suppressing lead leaching from perovskite solar cells (PSCs). However, polymers tend to excessively aggregate in the perovskite film, which hinders comprehensive encapsulation and disrupts charge transport efficiency, degrading lead leakage inhibition and device performance. Herein, a polymer dynamic soft encapsulation strategy driven by molecular extrusion is introduced to mitigate lead leakage in PSCs, achieved through the incorporation of poly(propylene adipate) (PPA) as a multifunctional additive in the perovskite formulation.

View Article and Find Full Text PDF