98%
921
2 minutes
20
Neuroendocrine neoplasms (NENs) arise from neuroendocrine cells in a wide variety of organs. One of the most affected disease sites is the gastrointestinal system, which originates the gastro-entero-pancreatic NENs (GEP-NENs), a heterogenous group of malignancies that are rapidly increasing in incidence. These tumors can be functioning, with secretory activity leading to identifiable clinical syndromes, or non-functioning, with no secretory activity but with local symptoms of tumor growth and metastasis. A limitation in biomarkers is a crucial unmet need in non-secretory NEN management, as clinical decision-making is made more difficult by obstacles in tumor classification, prognostic evaluation, assessment of treatment response and surveillance. The objective of this review is to present existing and novel biomarkers for NENs that can function as prognostic factors and monitor disease progression or regression longitudinally, with a special emphasis on innovative research into novel multianalyte biomarkers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.critrevonc.2024.104460 | DOI Listing |
Adv Healthc Mater
September 2025
David Price Evans Global Health and Infectious Diseases Group, Pharmacology & Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7BE, UK.
Early diagnosis of Alzheimer's disease (AD) is hindered by the high cost, complexity, and centralization of current diagnostic platforms such as enzyme-linked immunosorbent assay (ELISA) and single-molecule array (SIMOA). Here, an integrated point-of-care (PoC) biosensing platform is reported based on redox-active polyphenol red molecularly imprinted polymers (pPhR MIPs) deposited on highly porous gold (HPG) electrodes for the ultrasensitive, reagent-free detection of phosphorylated tau 181 (p-tau 181) in undiluted plasma and serum. The unique electrochemical interface combines the signal-enhancing properties of HPG with the redox functionality of pPhR, eliminating the need for external redox probes.
View Article and Find Full Text PDFFront Oncol
August 2025
Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, United States.
Circulating tumor DNA (ctDNA) has emerged as a promising biomarker for the early detection of esophageal cancer (EC), offering a minimally invasive means to assess tumor-derived genomic and epigenomic alterations. This review synthesizes current data on ctDNA biology, detection technologies, diagnostic performance, and clinical applicability in both esophageal adenocarcinoma and squamous cell carcinoma. We conducted a comprehensive literature review of PubMed-indexed studies on ctDNA in EC, emphasizing recent (January 1, 2019- December 31, 2024) findings, systematic reviews, and meta-analyses.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) spectroscopy represents a powerful analytical platform that combines non-destructive, label-free molecular identification with exceptional sensitivity for trace-level detection. Its capacity to generate information-rich spectral fingerprints makes SERS particularly advantageous for simultaneous multi-analyte analysis across diverse sample matrices, including complex biological systems. This study addresses the analytical challenges associated with identifying and quantifying multiple molecular species in complex environments by integrating SERS with advanced machine learning methodologies.
View Article and Find Full Text PDFBiomolecules
August 2025
Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus.
Heart failure (HF) is a leading cause of morbidity and mortality worldwide, underscoring the need for improved diagnostic, prognostic, and therapeutic strategies. Circulating microRNAs (c-miRNAs) have emerged as promising non-invasive biomarkers due to their stability, tissue specificity, and regulatory roles in cardiac pathophysiology. This review highlights the potential of c-miRNAs in enhancing HF diagnosis, risk stratification, and therapeutic monitoring, particularly when integrated with conventional biomarkers such as natriuretic peptides, galectin-3, soluble ST2, and high-sensitivity troponins.
View Article and Find Full Text PDFSemin Ophthalmol
August 2025
Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, LV Prasad Eye Institute, Hyderabad, India.
Purpose: The dry eye disease(DED) is caused by many possible factors, manifesting classical symptoms such as irritation, pain, and visual disturbance, which can severely impact the quality of life. This review aims to critically evaluate currently available point‑of‑care (POC) diagnostic kits for DED, focusing on osmolarity‑based and biomarker‑based assays, while exploring emerging technologies that promise better precision and personalized management.
Methods: A comprehensive literature survey (2010-2025) was undertaken using PubMed, Scopus, and Google Scholar to identify studies assessing DED pathophysiology, tear film biomarkers, and commercially available diagnostic systems.