Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: In this work, we evaluate the sodium magnetic resonance imaging (MRI) capabilities of a three-dimensional (3D) dual-echo ultrashort echo time (UTE) sequence with a novel rosette petal trajectory (PETALUTE), in comparison to the 3D density-adapted (DA) radial spokes UTE sequence in human articular cartilage in the knee.

Materials And Methods: We scanned five healthy subjects using a 3D dual-echo PETALUTE acquisition and two comparable implementations of 3D DA-radial spokes acquisitions, one matching the number of k-space projections (Radial - Matched Spokes) and the other matching the total number of samples (Radial - Matched Samples) acquired in k-space.

Results: The PETALUTE acquisition enabled equivalent sodium quantification in articular cartilage volumes of interest (168.8 ± 29.9 mM, mean ± standard deviation) to those derived from the 3D radial acquisitions (171.62 ± 28.7 mM and 149.8 ± 22.2 mM, respectively). We achieved a 41% shorter scan time of 2:06 for 3D PETALUTE, compared to 3:36 for 3D radial acquisitions. We also evaluated the feasibility of further acceleration of the PETALUTE sequence through retrospective compressed sensing with 2 × and 4 × acceleration of the first echo and showed structural similarity of 0.89 ± 0.03 and 0.87 ± 0.03 when compared to non-retrospectively accelerated reconstruction.

Conclusion: We demonstrate improved scan time with equivalent performance using a 3D dual-echo PETALUTE sequence compared to the 3D DA-radial sequence for sodium MRI of articular cartilage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769871PMC
http://dx.doi.org/10.1007/s00256-024-04774-5DOI Listing

Publication Analysis

Top Keywords

articular cartilage
16
human articular
8
ute sequence
8
dual-echo petalute
8
petalute acquisition
8
radial matched
8
radial acquisitions
8
scan time
8
petalute sequence
8
sequence
6

Similar Publications

Objective: Therapeutic potential of selective aggrecanase inhibition in osteoarthritis (OA) was previously demonstrated using a variant of endogenous tissue inhibitor of metalloproteinase-3 (TIMP-3); however, this relied on transgenic mice overexpressing TIMP-3. Here, we develop a translational approach for harnessing the aggrecanase-selective inhibitory activity of TIMP-3 using the latency associated peptide (LAP) technology.

Methods: We successfully produced and purified recombinant LAP-TIMP-3 fusion proteins and determined the pharmacokinetics of these proteins in vivo following systemic injection.

View Article and Find Full Text PDF

Objective: To evaluate the feasibility of performing meniscal transection and shaver debridement (MTSD) with a 1.9-mm needle arthroscope (needle arthroscopy [NA]) in medium-sized (7- to 15-kg) dogs, and to compare meniscal visibility, procedural difficulty, and iatrogenic articular cartilage injury (IACI) with a standard 2.7-mm arthroscope (standard arthroscopy [SA]).

View Article and Find Full Text PDF

Potential Role of the PGE2-EP4-Ca2+ Signaling Axis in Post-Traumatic Osteoarthritis.

J Vis Exp

August 2025

Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University; Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences;

Post-traumatic osteoarthritis (PTOA) is a degenerative joint disease triggered by trauma or intense mechanical stress, leading to joint cartilage degeneration and functional impairment. Prostaglandin E2 (PGE2) contributes significantly to cartilage degradation following mechanical injury by activating its receptor, Prostaglandin E receptor 4 (EP4), on chondrocyte membranes. The homeostasis of articular cartilage primarily relies on the dynamic balance between cartilage degradation and repair, a process finely regulated by chondrocytes.

View Article and Find Full Text PDF

Targeted Blockage of Pathological Extracellular Vesicles and Particles From Fibroblast-Like Synoviocytes for Osteoarthritis Relief: Proteomic Analysis and Cellular Effect.

J Extracell Vesicles

September 2025

Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.

Osteoarthritis (OA), the prevalent debilitating joint disorder, is accelerated by dysregulated intercellular crosstalk, yet the role of fibroblast-like synoviocyte (FLS)-derived extracellular vesicles and particles (EVPs) in disease progression remains to be elucidated. Here, integrative analysis of clinical specimens, animal models, and publicly available datasets revealed significant alterations in exosomal pathways within OA synovium. Proteomic profiling revealed distinct molecular signatures in EVPs derived from inflammatory and senescent FLSs, reflecting the pathophysiological status of their parent cells.

View Article and Find Full Text PDF

Purpose: The posterior tibial slope (PTS) plays a key role in knee biomechanics and may influence the risk of anterior cruciate ligament (ACL) rupture as well as the outcomes of its reconstruction. We hypothesised that a steeper medial posterior tibial slope (MPTS) would be associated with an increased risk of bilateral ACL reconstruction compared to unilateral reconstruction. This study aimed to test this hypothesis by comparing the MPTS between patients undergoing unilateral ACL reconstruction (uniACLR) and those requiring non-simultaneous bilateral ACL reconstruction (biACLR), using radiographic imaging.

View Article and Find Full Text PDF