Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Serum iron has long been thought to exhibit diurnal variation and is subsequently considered an unreliable biomarker of systemic iron status. Circadian regulation (endogenous ~24-h periodic oscillation of a biologic function) governs many critical physiologic processes. It is unknown whether serum iron levels are regulated by circadian machinery; likewise, the circadian nature of key players of iron homeostasis is unstudied. Here we show that serum iron, transferrin saturation (TSAT), hepatic transferrin receptor (TFR1) gene (Tfrc) expression, and erythropoietic activity exhibit circadian rhythms. Daily oscillations of serum iron, TSAT, hepatic Tfrc expression, and erythropoietic activity are maintained in mice housed in constant darkness, where oscillation reflects an endogenous circadian period. Oscillations of serum iron, TSAT, hepatic Tfrc, and erythropoietic activity were ablated when circadian machinery was disrupted in Bmal1 knockout mice. Interestingly, we find that circadian oscillations of erythropoietic activity and hepatic Tfrc expression are maintained in opposing phase, likely allowing for optimized usage and storage of serum iron whilst maintaining adequate serum levels and TSAT. This study provides the first confirmatory evidence that serum iron is circadian regulated, discerns circadian rhythms of TSAT, a widely used clinical marker of iron status, and uncovers liver-specific circadian regulation of TFR1, a major player in cellular iron uptake.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajh.27447DOI Listing

Publication Analysis

Top Keywords

serum iron
32
hepatic tfrc
16
tfrc expression
16
erythropoietic activity
16
circadian
12
tsat hepatic
12
iron
11
serum
9
iron transferrin
8
transferrin saturation
8

Similar Publications

Excessive gestational weight gain (GWG) is associated with various adverse pregnancy outcomes, including disruption of placental function and fetal development. Iron transport through the placenta is crucial for fetal growth, and transferrin receptor 2 (TfR2) plays a key role in iron homeostasis. However, the effect of excessive GWG on placental TfR2 expression and neonatal iron parameters remains unclear.

View Article and Find Full Text PDF

Background: Iron metabolism may influence breast cancer development; however, links between iron-related biomarkers and breast cancer remain inconclusive. Given differences in iron status by menopausal status, we examined associations of ferritin and other iron biomarkers, with breast cancer incidence, stratified by menopausal status, in a Korean screening cohort.

Methods: This cohort study included 140,747 Korean women screened for breast cancer from 2011-2020.

View Article and Find Full Text PDF

Copper (Cu) supplementation is essential in pig nutrition; however, its effects on performance, trace element accumulation in edible tissues, and environmental excretion require careful evaluation. In the present study a total of 24 male, castrated fattening pigs of two different hybrid mast lines (11 weeks of age) were divided according to their initial body weight (25.8 ± 3.

View Article and Find Full Text PDF

Objectives: This study investigated the cardioprotective effects of stachydrine (STA) in lipopolysaccharide (LPS)-induced septic mice and H9c2 cardiomyocytes, focusing on its anti-apoptotic, anti-inflammatory, and anti-ferroptotic actions.

Methods: We established an LPS-induced sepsis model in mice and an LPS-stimulated H9c2 cardiomyocyte model in vitro.

Results: STA markedly reduced LPS-induced myocardial apoptosis, as demonstrated by decreased TUNEL-positive cells, and attenuated the elevation of serum cardiac injury markers, including creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), brain natriuretic peptide (BNP), cardiac troponin I (cTnI), and cardiac troponin T (cTnT) levels.

View Article and Find Full Text PDF

Clinicians need a good understanding of available tools to diagnose iron deficiency (ID). Interpretation of commonly used laboratory tests can be challenging due to the dynamic nature of iron homeostasis and concurrent inflammation, which influence results. The misinterpretation of iron studies, inconsistencies in ID diagnostic guidelines, and low awareness of non-anaemic ID may lead to missed diagnoses and opportunities for treatment.

View Article and Find Full Text PDF