Novel Discrete and Imprinted Fluoride-Selective Sensors: Bridging the Gap from DMSO to Aqueous Samples.

Small

Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República (UdelaR), Av. Gral. Flores 2124, Montevideo, 11800, Uruguay.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fluoride in drinking water has beneficial or harmful health effects depending on its concentration. This highlights the need for new low-cost and portable sensors capable of in situ monitoring of F ions. Unfortunately, achieving high levels of water compatibility and fluoride specificity remains a challenge. Here, four new urea-based discrete sensors are prepared and characterized. The sensors containing anthracenyl- (5) and 9H-fluorenyl- (7) signaling units exhibit intense luminescent emissions in dimethyl sulfoxide, the former being particularly sensitive and selective to fluoride. In water, 5 displays a superior sensitivity (871 M) and a detection limit (8 µm) below international guidelines, albeit with cross-sensitivity to HPO‾. To enhance the performance, 5 and 7 are embedded into a fluoride-imprinted polymeric matrix to give solid-state sensors (5P and 7P, respectively). 5P shows good sensitivity (360 M) and specificity in water. Besides, it has a low detection limit (35 µm) and a response linear range (118-6300 µm) encompassing the limit established by the Environmental Protection Agency (211 µm). Furthermore, 5P also displays good reusability and adequate recovery values in real-sample testing (102 ± 2%), constituting the first example of a low-cost anion-imprinted polymeric probe tailored for the selective sensing of fluoride in aqueous samples.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202402696DOI Listing

Publication Analysis

Top Keywords

aqueous samples
8
detection limit
8
sensors
5
novel discrete
4
discrete imprinted
4
imprinted fluoride-selective
4
fluoride-selective sensors
4
sensors bridging
4
bridging gap
4
gap dmso
4

Similar Publications

Application of lignin extracted from fibers and aminated lignin in anionic dyes contaminated water remediation.

Int J Phytoremediation

September 2025

Department of Fashion and Textile Design, College of Arts and Design, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

In this paper, lignin was chemically extracted from fibers and modified with branched polyethyleneimine (BPEI) and the resulting samples were applied for the adsorption of two anionic dyes; Acid red 183 (AR183) and Acid blue 25 (AB25) from aqueous suspension. Analytical characterization methods including SEM, FT-IR, TGA/DTG, and XRD were used to analyze the studied samples. The images of the extracted lignin displayed a rough feature.

View Article and Find Full Text PDF

Novel development of lipid-based formulations: Improved wettability and homogeneous API solid dispersion visualised via near-infrared hyperspectral imaging.

Eur J Pharm Biopharm

September 2025

Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical, Technology and Biopharmacy, Graz, Austria. Electronic address:

Lipid-based formulations have been successfully applied to improve the aqueous solubility of active pharmaceutical ingredients (APIs), however, with the bottleneck of limited wettability of the system. In this study, a lipid-based system was developed using polyglycerol ester of fatty acids (PGFA) as the main component and hexaglycerol (PG6) as a wetting agent. Felodipine, a BCS class II compound was selected as a model API.

View Article and Find Full Text PDF

Are Clouds a Neglected Reservoir of Pesticides?

Environ Sci Technol

September 2025

Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, UMR 6296, Clermont-Ferrand 63000, France.

Pesticide contamination is a growing and alarming concern for both the environment and human health. Widely used in agriculture to control pests and disease carriers, pesticides undergo extensive long-range atmospheric transport in the gas phase, in aerosols, and, as shown here, in clouds. We measured the concentration of 32 pesticides at the puy de Dôme observatory (France) in the sub μg L to μg L range in cloud water, largely arising from regional to long-range transport that also involves pesticides currently banned for agricultural use in France.

View Article and Find Full Text PDF

Sum-frequency generation vibrational spectroscopy (SFG-VS) has been well-established as a unique spectroscopic probe to interrogate the structure, interaction, and dynamics of molecular interfaces, with sub-monolayer sensitivity and broad applications. Sub-1 cm-1 High-Resolution Broadband SFG-VS (HR-BB-SFG-VS) has shown advantages with high spectral resolution and accurate spectral line shape. However, due to the lower peak intensity for the long picosecond pulse used in achieving sub-wavenumber resolution in the HR-BB-SFG-VS measurement, only molecular interfaces with relatively strong signal have been studied.

View Article and Find Full Text PDF

A novel silica-based sorbent, silica-carbazole-formazan (Si-Carb-Formazan), was synthesized through in situ functionalization with a newly prepared carbazole formazan derivative to remove Cu-(II) ions from aqueous solutions efficiently. The sorbent was characterized using techniques such as FTIR, SEM, TGA, and XPS, which revealed a porous structure with a high surface area and excellent thermal stability. Batch adsorption experiments analyzed the influence of various factors on the sorbent's performance, demonstrating its high efficiency.

View Article and Find Full Text PDF