A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Numerical assessment of using various outlet boundary conditions on the hemodynamics of an idealized left coronary artery model. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vascular diseases are greatly influenced by the hemodynamic parameters and the accuracy of determining these parameters depends on the use of correct boundary conditions. The present work carries out a two-way fluid-structure interaction (FSI) simulation to investigate the effects of outlet pressure boundary conditions on the hemodynamics through the left coronary artery bifurcation with moderate stenosis (50%) in the left anterior descending (LAD) branch. The Carreau viscosity model is employed to characterise the shear-thinning behaviour of blood. The results of the study reveal that the employment of zero pressure at the outlet boundaries significantly overestimates the values of hemodynamic variables like wall shear stress (WSS), and time-averaged wall shear stress (TAWSS) compared with human healthy and pulsatile pressure outlet conditions. However, the difference between these variables is marginally low for human healthy and pulsatile pressure outlets. The oscillatory shear index (OSI) remains the same across all scenarios, indicating independence from the outlet boundary condition. Furthermore, the magnitude of negative axial velocity and pressure drop across the plaque are found to be higher at the zero pressure outlet boundary condition.

Download full-text PDF

Source
http://dx.doi.org/10.1088/2057-1976/ad7030DOI Listing

Publication Analysis

Top Keywords

outlet boundary
12
boundary conditions
12
pressure outlet
12
conditions hemodynamics
8
left coronary
8
coronary artery
8
wall shear
8
shear stress
8
human healthy
8
healthy pulsatile
8

Similar Publications