Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chirality-induced spin selectivity (CISS) has the potential to control the spin dynamics of chiral molecules for applications in quantum information science. Here we investigate the effect of CISS on the spin dynamics of radical pair formation following photodriven hole transfer in a pair of donor-chiral bridge-acceptor (D-Bχ-A) enantiomers, where D = 2,2,6,6-tetramethyl[1,3]-dioxolo[4,5-][1,3]benzodioxole, Bχ = ()- or ()-2,2'-dimethoxy-4,4'-diphenyl-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthalene, and A = naphthalene-(1,4:5,8)-bis(dicarboximide). The results are compared to those obtained on the corresponding achiral D-B-A reference molecule in which B = 2″,3',5',6″-tetramethyl-1,1':4',1″:4″,1‴-quaterphenyl. Photoexcitation of A in a randomly oriented sample of D-Bχ-A in glassy butyronitrile at 85 K results in subnanosecond two-step hole transfer from *A to D to form D-Bχ-A, which was characterized using time-resolved electron paramagnetic resonance (TREPR) spectroscopy at X (9.6 GHz), Q (34 GHz), and W (94 GHz) bands. The spectra show line shape changes that are characteristic of a ∼38% contribution of CISS to the spin dynamics of D-Bχ-A formation. The line shape changes resulting from CISS are particularly apparent in the TREPR spectra at -band as predicted by recent theory. These results show that (1) CISS has a significant influence on radical pair dynamics initiated by photodriven hole transfer, which is complementary to our recent electron transfer results, and (2) CISS can be detected using TREPR on radical pairs that are randomly oriented relative to an external magnetic field.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c08706DOI Listing

Publication Analysis

Top Keywords

hole transfer
16
randomly oriented
12
spin dynamics
12
chirality-induced spin
8
spin selectivity
8
radical pairs
8
ciss spin
8
radical pair
8
photodriven hole
8
ghz ghz
8

Similar Publications

Construction of melem/BiVO/g-CN photocatalyst with a conjugated S-scheme charge transfer pathway for boosting photocatalytic activity under LED light irradiation.

Environ Res

September 2025

Center for High Technology Development, Nguyen Tat Thanh University, Ho Chi Minh City Hi-Tech Park, Ho Chi Minh City, Vietnam; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam. Electronic address:

The development of novel multijunction heterostructure photocatalysts is critical for the efficient degradation of organic pollutants, attributed to their ability to enhance the separation of photogenerated electron-hole pairs. In our study, a ternary composite, melem/BiVO/g-CN (BVO/CNMH), was synthesized via an acid-soaking method followed by calcination, using g-CN as a sacrificial precursor in the presence of BiVO. This approach yielded a porous, interconnected architecture in BVO/CNMH.

View Article and Find Full Text PDF

Inverted quantum dot light-emitting diodes (QLEDs) show great promise for next-generation displays due to their compatibility with integrated circuit architectures. However, their development has been hindered by inefficient exciton utilization and charge transport imbalance. Here, we present a strategy for regulating charge-exciton dynamics through the rational design of a multifunctional hole transport layer (HTL), incorporating polyethylenimine ethoxylated (PEIE) as a protective interlayer in fully-solution-processed inverted red QLEDs.

View Article and Find Full Text PDF

Unusual Core-Ionization Pathways in Hydrated Na: A Theoretical KV Study.

Inorg Chem

September 2025

Laboratoire de Chimie Physique Matière et Rayonnement (LCPMR), CNRS UMR 7614, Sorbonne Université (SU), 4 place Jussieu, Paris 75005, France.

The one-photon KV X-ray photoelectron spectra of Na and its hydrated clusters [Na(HO)] ( = 1-6) are dominated by the unusual 1s → 1s3s transition. KV spectroscopy also reveals a pronounced redistribution of the 1s → 1s3p transition cross sections, directly correlated with hydration number and molecular arrangement. Its intrinsic two-step nature, involving simultaneous core ionization and core excitation, enables detailed investigation of solvation-induced electronic structure changes, including dipole-forbidden excitations, core-valence charge transfer, and subtle 1s → V energy shifts.

View Article and Find Full Text PDF

Perylenediimide-Based Donor-Acceptor MOF for Sunlight-Driven Photocatalytic -α-C(sp)-H Bond Functionalization of Tetrahydroisoquinoline.

Inorg Chem

September 2025

Yunnan Key Laboratory of Crystalline Porous Organic Functional Materials, College of Chemical and Materials Engineering, Qujing Normal University, Qujing 655011, China.

Sequential assembly of donor-acceptor components at the molecular level within a MOF is an effective strategy to achieve efficient electron-hole separation for enhancing the activity of photocatalysts. Meanwhile, the highly efficient and selective functionalization of tetrahydroisoquinoline (THIQ) under mild conditions remains an urgent demand in both the scientific and industrial communities. This work reports a donor-acceptor MOF photocatalyst () constructed by the coordinated assembly of donor and acceptor components, in which a naphthalene unit serves as an electron donor and a perylenediimide unit as an electron acceptor.

View Article and Find Full Text PDF

Pax-5a gene, as a nucleic acid biomarker closely associated with B-cell acute lymphoblastic leukemia (B-ALL), holds significant potential for early disease diagnosis. In this study, we developed a highly accurate and efficient "on-super on-off" photoelectrochemical (PEC) biosensor based on a dual-photoelectrode heterojunction system integrated with a multisphere cascade DNA amplification strategy. The designed heterojunction dual-photoelectrode platform, comprising a InO/CdS photoanode (on state) and an in situ-formed MIL-68(In)/InO (MIO) photocathode, effectively extends the electron-hole transport pathway, enhances photogenerated charge separation, and produces high-amplitude signal output (super on state), thereby providing a robust baseline for signal transduction.

View Article and Find Full Text PDF